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Abstract

Summary of discussions between F. Tardella (host) and L. Liberti (guest) during an academic
visit to Università di Roma “La Sapienza” funded by COST TD1207, in view of future joint works
and visits.

1 Purpose of the STSM

The main purpose of the visit was to establish a scientific ground for discussing research topics in com-
binatorial and nonlinear optimization.

2 Description of the work carried out during the STSM

I gave a seminar titled “Quantile regression on large data sets — Random projections in linear program-
ming”, which focused on applying random projection techniques to dense linear programs arising in the
well known statistical problem of quantile regression.

During the rest of my time in Rome, my host (Fabio Tardella) and I discussed several topics for further
possible work on research ideas for combinatorial and nonlinear optimization. Some details about this
discussion are summarized in the next session.

3 Description of the main results obtained

The purpose being the estbalishment of a common ground for future research, I feel the goal has been
achieved. We now have a potential research agenda with enough broad topics to keep us occupied in the
next few years.

3.1 Worst-case performance of random projections in optimization

In the framework of Johnson-Lindenstrauss type [6] random projections used in optimization [12], in
particular in Linear Programming (LP) and Integer Programming (IP) [8], one has to transform the
constraints of a Mathematical Program (MP) into a lower dimensional version thereof. For example, the
constraints of an LP in standard form are Ax = b, where A is an m × n matrix: one has to find an
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appropriate (sub-Gaussian) random projector T such that, in TAx = Tb the matrix TA is k × n with
k � m. In [8, 7] it is shown that if T is sampled componentwise from a normal distribution N(0, 1√

k
)

and k is O(lnn) then

Ax = b ∧ x ≥ 0 is feasible if and only if TAx = Tb ∧ x ≥ 0 is feasible (∗)

with probability approaching 1 exponentially fast as k increases. An important question in this setting
is determining the worst case. With what probability is (∗) false, and, more importantly, how large can
‖Ax− b‖2 −min(x, 0) be?

3.2 Diagonally dominant programming

In a recent breakthrough, Amir Ali Ahmadi et al. [1] proposed a hierarchy of LPs which inner ap-
proximates the positive semidefinite (PSD) cone. By strong duality, this allows to both inner- and
outer-approximate Semidefinite Programming (SDP) problems. Given that SDP solving technology is
not as advanced as LP solving technology, this breakthrough promises a key to effective and strong LP
relaxations of many problems. In [10] this was applied to control problems; in [4], the technique was ap-
plied to the Distance Geometry Problem (also see Sect. 3.3) — both are continuous nonlinear problems.
But the technique should be tried and tested on a much broader spectrum of problems, including those
of combinatorial type.

3.3 Distance geometry in protein conformation

The Distance Geometry Problem (DGP) is as follows. Given an integer K > 0 and a simple
undirected non-negatively edge-weighted graph G = (V,E, d) with d : E → R+, establish whether there
exists a realization function x : V → RK such that:

∀{i, j} ∈ E ‖xi − xj‖2 = dij .

This problem has a long history, and arises in many application fields [9], including protein conformation
(K = 3), wireless sensor localization (K = 2), clock synchronization protocols (K = 1), coordination of
unmanned underwater vehicles (K = 3) and others. In the application to protein conformation, the set V
of vertices represents atoms in a protein backbone, and E represents the pairs for which the inter-atomic
distance is known. For every such edge e = {i, j} ∈ E, dij is known fairly precisely if e represents
an inter-atomic bond, or is a direct result of inter-atomic bonds and angles. On the other hand, dij is
known as an interval if e is measured through Nuclear Magnetic Resonance (NMR). Various techniques
are currently being tested in order to retain the efficiency of the mixed-combinatorial techniques used
when the distances are known precisely in the case where some of them are known imprecisely, but the
issue is still open.

3.3.1 The unassigned DGP

NMR experiments do not actually yield the value dij relative to given i, j ∈ V — this is actually an
outcome of a post-processing of the “raw output”, which is a distribution over a set of triplets

(atom type1, atom type2, distance value).

Let A be the set of atom types (e.g. H, C, O, N,. . . ) occurring in the molecule M under investigation.
Then the output of an NMR experiment can be considered as a function p : A×A× R+ → [0, 1], where
p(a1, a2, δ) is the probability that two atoms i, j with types a1, a2 respectively have distance δ. The
Unassigned DGP (UDGP) consists in finding all graphs G which are compatible with the probability
distribution p, i.e. the relative assignment of distance values to edges respects the distribution and
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the atom types (note that problem statement is informal). As far as we know, NMR machinery uses
a meta-heuristic (usually based on simulated annealing) to solve the UDGP. We also know that this
methodology yields DGP instances which are usually infeasible, since around 10%-20% of the edges have
the wrong distance [3]. Currently, we are aware of only one alternative method for solving the UDGP in
the literature, namely TRIBOND [5], but this is also a heuristic. The issue here is to formally define the
UDGP and then find exact solution methods for finding all graphs which are compatible with the NMR
output.

3.4 Multiplicative weights update

Multiplicative weights update algorithms [2] are essentially ”weighted Multi-Start” heuristics with an
interesting twist: the overall performance of the algorithm is bounded by the performance of the best-
performing weighted component. Although this is only a relative bound, it becomes absolute if one can
bound the best-performing component using the problem structure (see e.g. [13]). How well does this
perform for general optimization problems? The first results appear to be promising [11], but a much
more detailed investigation is necessary.

4 Future collaboration with the host institution

We are looking into ways of funding a longer visit of mine to Fabio Tardella’s department, possibly in
2017 or 2018. We are writing a research proposal for a call by Università di Roma “La Sapienza”. If
successful, I will be able to visit this department for up to 1 month.
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