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1 Purpose of the STSM

In the beginning of 2012, we started the study of a fundamental integer bilevel optimization
problem proposed in [3]. The mathematical formulation is a natural extension of the classic
0–1 knapsack problem to two levels. In short, the problem describes a Stackelberg game
where the upper level interdicts a subset of the lower level’s knapsack items.

The goal of this STSM was to intensively discuss the algorithmic ideas developed so far
to solve the referred bilevel knapsack optimization problem. Moreover, from this meetings,
it was expected to result a clear and formal description of our theoretical and practical
contributions in this context.

2 Description of the work carried out during the STSM

Since the beginning of our collaboration, we tried to always have an updated draft paper
of all our achievements in the field of bilevel optimization. Therefore, in the first meetings
of the STSM, we improved that draft by adding and correcting theoretical results.

Then, we decided which computations would be interesting to perform in order to see
the effectiveness of our approach to solve the bilevel knapsack problem. In this way, it was
done a detailed analysis of our algorithm by solving random instances.

Finally, we compared the performance of our algorithm with a natural cutting plane
approach and the method of [3].
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3 Description of the main results obtained

The bilevel knapsack problem in which we have been concentrated is the following

(DN) minimize
(x,y)∈{0,1}n×{0,1}n

n∑
i=1

piyi (1a)

subject to
n∑

i=1

vixi ≤ Cu (1b)

where y1, . . . , yn solves the follower’s problem

maximize
y∈{0,1}n

n∑
i=1

piyi (1c)

s.t.

n∑
i=1

wiyi ≤ Cl (1d)

yi ≤ 1 − xi for 1 ≤ i ≤ n. (1e)

Our final algorithm proposal, the Caprara-Carvalho-Lodi-Woeginger Algorithm
(CCLW), is the merging of several theoretical results that allow a significant reduction
of computational times to find the an optimal solution.

The bottom line of CCLW is the upper bound to DN that results by relaxing the
integrality of the lower level variables y in DN. We prove that this upper bound can be
computed by solving a mixed integer programming problem

(MIP 1) minimize
x∈{0,1}n,z∈[0,∞)n+1,u∈[0,∞)n

z0Cl +

n∑
i=1

ui (2a)

subject to

n∑
i=1

vixi ≤ Cu (2b)

ui ≥ 0 for 1 ≤ i ≤ n (2c)

ui ≥ zi − pixi for 1 ≤ i ≤ n (2d)

wiz0 + zi ≥ pi for 1 ≤ i ≤ n. (2e)

In this way, a feasible solution x1 to the upper level is computed. In practice, this
solution happens to be in general the optimal one. This step is followed by solving the 0–1
knapsack problem (lower level problem) for the upper level solution found x1. See Figure 1.

All the algorithms for (mixed) integer bilevel optimization problems in the literature
are enumerative approaches in the sense that several upper level solutions are computed
until the end of the algorithm. CCLW is not an exception, although its way of doing this
enumeration is completely new.
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Figure 1: Illustration of the upper bounds to DN, where (x∗, y∗) is an optimal solution to
DN,

(
x1, y1

)
is the optimal solution to MIP 1 and

(
x1, y

(
x1
))

is the corresponding lower
level optimal solution for x1.

CCLW is an iterative method. In each iteration k of CCLW, it is computed a new upper
level feasible solution xk by solving MIP 1 with additional constraints. This additional
constraints enable us to reduce significantly the number of iterations and constitute one of
the main results of our work.

The constraints to be added to MIP 1 in each iteration allow us to avoid the computation
of upper level feasible solutions that will not improve (reduce) the current upper bound
value, OPT , to DN and therefore, are uninteresting. In this context we proved the validity
of the cutting plane constraints

n∑
i=1

yi

(
xk
)
pi (1 − xi) ≤ OPT − 1.

This constraint can be interpreted as follows: if OPT is not the optimal value of DN, the
upper level must be able to reduce it since that is its goal.

The final essential ingredient of CCLW is the strong constraint

z0Cl +
n∑

i=1

ui − z0wmax ≤ OPT − 1

where wmax = maximize
i=1,...,n

wi. We proved that this constraint is valid. The strong constraint

traduces some how the lower level optimal reaction to an upper level solution allowing us
to save the enumeration of uninteresting solutions.

Through our computational results, it was clear the importance of the two constraints de-
scribed above to have an approach superior to the ones available in the literature. Moreover,
a generalization of this constraints to an approach able to solve general bilevel interdiction
problems seems easy.

4 Future collaboration with the host institution

Our collaboration has been very fruitful, thus we are searching for a real-world applica-
tion of integer bilevel optimization to apply our knowledge in this field. Namely, bilevel
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optimization formulations have been extensively used in planning and protection of infras-
tructures (see [4] and [1]) which could be interesting in the context of efficient and robust
energy networks. Another interesting application of a bilevel formulation appears in the
context of short-term electricity markets, see [2].

In the meanwhile, we are studying the generalization of our results to general interdiction
bilevel optimization problems.

5 Foreseen publications/articles resulting from the STSM

From this STSM, it is going to result a paper entitled: Bilevel knapsack with interdiction
constraints. Currently, the authors of this paper are making a careful final reading of it.
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