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Unit Commitment

I is the problem of determining switching and operational decisions,

I for a system of power producing units, over some time horizon,

I so that all relevant technological and economical conditions are met.

1985 VEAG in (East Germany)

2006 Virtual Power Plant
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Specification (Mixed-Integer Linear Program – When Deterministic)

Unit Commitment for a hydro-thermal system (early VEAG + Vattenfall)

min
{
c>1 ξ1 + c>2 ξ2 : A1ξ1 + A2ξ2 = b, ξ1 ∈ X1, ξ2 ∈ X2

}
Variables:

I ξ1: start-up/shut-down for thermal units,

I ξ2: all remaining, i.e., power output, pumping/generating in pumped-storage
(psp), water levels in psp, auxillary variables for modeling specific effects.

Objective:

I affinely linear fuel costs for operation and piece-wise constant for switching
of thermal units

Constraints:

I connecting units: load balances, reserve balances, ramping

I for individual units: output bounds, minimum up- and down-times, water
management in psp,
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II

The Greatest – Unit Commitment Under
Uncertainty
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Unit Commitment under Uncertainty Fourty Years Ago

I Before deregulation, power producers optimized costs by fuel cost
minimization, with power demand as major source of uncertainty.

I TV sets consumed more energy than today. Their operation had to be
included when estimating power demand, at least during certain
periods of the day.

I In the 1970ies and 1980ies Heavyweight Boxing was a very popular
spectator sport (Ali, Frazier, Foreman etc.), in West and East
Germany.

I Time zone difference and duration of fight (knock-out: if at all and
when) produced random variables that were hard to handle ... and
(induced) water consumption was uncertain, too!
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Specification (continued)

Unit Commitment with random load

f (ξ1, ω) = [c>1 ξ1 + min
ξ2∈X2

{
c>2 ξ2 : A2ξ2 = b(ω)− A1ξ1

}
, ω ∈ Ω

QE(ξ1) :=

∫
Ω

[
c>1 ξ1 + min

ξ2∈X2

{
c>2 ξ2 : A2ξ2 = b(ω)− A1ξ1

}]
P(dω)

Variables:

I ξ1 ∈ X1: start-up/shut-down for thermal units,

I ξ2(ω): all remaining, i.e., power output, pumping/generating in
pumped-storage (psp), water levels in psp, auxillary variables for modeling
specific effects.

Objective:

f (ξ1, .) random cost profile for operation and switching of thermal units
inuced by start-up/shut-down scheme ξ1

QE(ξ1) :=

∫
Ω
f (ξ1, ω)P(dω)−−− Expected Value – Risk Neutral Model
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Unit Commitment under Uncertainty over the Years

min
x

{
c>x + min

y

{
q>y : Wy = h(ω)− Tx , y ∈ Y

}
︸ ︷︷ ︸

f (x,ω)

: x ∈ X

}

I 1985: Load the only quantity with relevant uncertainty -
Risk neutral models, only !

f (x , z(ω))− total cost for up/down regime x under random load z(ω)

I 2006: After deregulation omnipresent uncertainty at input (renewables) and
output sides. - Risk aversion became more and more indispensable !

f (x , z(ω)) −
total cost for aquisition x of a vpp under random power in- and outputs z

I 2010: Congestion and capacity management under uncertain in- and outputs

f (x , z(ω)) −
x pre-commitment so that renewables’ inflow z compensated with

minimal re-commitment/re-dispatch and without overloading grid components
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III

Unit Commitment – Subjective Comments



Unit Commitment and Economic Dispatch

Unit Commitment (UC) and Economic Dispatch (ED) have a
research history of more than 50 years.

UC models being large-scale mixed-integer nonlinear
optimization problems solution approaches always have been
inspired by ideas from different subdisciplines of optimization,
with permanently adjusting “large-scale” to bigger and bigger
numbers.
In recent years, the integration of UC into energy optimization
models which, themselves, already are large-scale, e.g., power
flow or uncertainty management in production and trading,
became a focal research topic.
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The Early Days

In their UC literature synopsis [Sheble-Fahd1994] review the
first 25 years of the development and identify approaches some
of which later became major pathways in algorithmic unit
commitment.

They address both heuristics, such as Exhaustive Enumeration,
Priority Lists, or Simulated Annealing, as well as
mathematically rigorous methods from subdisciplines of
optimization as there are Dynamic Programming,
(Mixed-Integer) Linear Programming, Network Flows, and
Lagrangian Methods.

The computationally more demanding rigorous methods, on the
other hand, yield provably optimal solutions or at least lower
bounds allowing for gap estimates between objective function
values of the best feasible solution found so far and lower
bounds generated in the course of the algorithm.
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Lagrangian Relaxation - as it was

[ShebleFahd1994] grant a “clear consensus presently tending
toward the Lagrangian Relaxation (LR) over other
methodologies”. Indeed, still today LR offers flexible
possibilities for relaxing constraints complicating the model,
however, at the cost of having to solve repeatedly “close
cousins” to the relaxed problem.
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The key features of LR applied to UC have been and still are:

(i) relaxation of constraints interlinking units, e.g., load
coverage or reserve requirements, and arrival at single-unit
subproblems,

(ii) addition of the relaxed constraints, together with Lagrange
multipliers, to the objective, so that the resulting problem is
easier to solve than the original,

(iii) solution of the convex, nonsmooth Lagrangian dual whose
objective-function value calculation benefits from reduction to
solving single-unit subproblems and whose optimal value forms
a lower bound to the optimal value of the UC problem,

(iv) application of Lagrangian heuristics to obtain “promising”
feasible primal solutions from the results of the dual
optimization.
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Lagrangian Relaxation - as it is

Fueled by improved bundle-trust subgradient methods for the
Lagrangian dual and by permanent progress in “off-the-shelve”
mixed-integer linear programming (MILP) software, up to the
advent of market deregulation, two basic aproaches developed
which still today are widely used:

(i) LR, often in conjunction with heuristic methods for finding
“promising” feasible solutions,
(ii) direct solution (by branch-and-bound) of MILP
formulations of UC by “off-the-shelve” solvers.
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Lagrangian Relaxation - as it will be

Rather than the transition to different time horizons, from
short via medium to long-term, the new economic environment
in the course of energy market deregulation poses research
necessities and provides incentive to integrate UC and ED with
load flow and uncertainty treatment, [Gabriel-etal2013].

The latter is intended in the widest sense, from handling
stochasticity to topics of mathematical equilibria in the context
of power trading and bidding into power markets. In particular,
this means to integrate UC into models which already are
complex themselves.
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Power Flow - Integrating UC and AC Load Flow

This was considered utopic throughout the “Early Days”, but
now became possible by studying the quadratic nonconvex AC
load flow equations from the viewpoint of semidefinite
optimization. In [LavaeiLow2011] after relaxation of the rank
condition the solution to the dual of the remaining convex
model allows to retrieve a primal solution often meeting the
relaxed rank condition, and thus enabling to solve nonconvex
power flow optimization problems to global optimality.
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Power Flow – DC Model and Ohmic Losses

The DC Load Flow Model provides a linear approximation of
its AC counterpart by resorting to linear relations and avoiding
variables in the space of complex numbers, see
[Franketal2012a,Franketal2012b]. The Ohmic Losses
approximation, [Sanchez-MartinRamos1997], provides the
possibility to include power losses within the DC-approximation
of an AC power system. Precise modeling of power losses turns
out instrumental in congestion management when load
dispatches or even commitments of units have to be revised to
increase throughput of the grid under increased inflows of
renewables.
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of an AC power system. Precise modeling of power losses turns
out instrumental in congestion management when load
dispatches or even commitments of units have to be revised to
increase throughput of the grid under increased inflows of
renewables.



Polyhedral Methods

Despite its success in combinatorial optimization, cutting plane
methods based on polyhedral studies, either applied directly or
enhancing branch-and-bound came to the fore in UC a bit more
than 10 years ago, only. There always have been polytopes

with fancy names ‘‘pretending to be real-life’’ .

However, UC, really a real-life model in this

respect, was a no-name product, which has changed,

fortunately. At this time, market deregulation enforced
the need of solving UC in a competitive environment under
incomplete information. In this way, solving UC problems
became a subroutine in the treatment of more complex decision
problems in electricity supply. Today tight formulations for
crucial model ingredients and for complete polytopes arising in
UC are available
[LeeLeungMargot2004,Morales-EspanaGentileRamos2015].
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Uncertainty

In the presence of uncertainty, UC either lives in a
non-competitive or competitive environment.
The former concerns the time before, the latter since
deregulation of energy markets. Before deregulation load has
been the dominating uncertainty prone entity,
[TakritiBirgeLong1996]
.
After deregulation UC-relevant sources of uncertainty have
spread considerably: power input from renewables, power prices
determined by bidding into power exchanges, competitors’
actions at electricity markets.
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Yet, UC is understood in a broader context than before. It
rather is the scheduling of decentralized power supply with its
small generating facilities than commitment of thermal let alone
nuclear generation units.
While the mathematical apparatus is fairly well developed for
exogenous uncertainty, the situation is completely different for
endogenous uncertainty, i.e., with decision dependent
probability distributions.
In case uncertainty is captured by probability measures,
stochastic integer programming offers methodology for handling
UC, both algorithmically and regarding structural
understanding,
[TakritiBirgeLong1996,CarøeSchultz1998,Schultz2003].
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