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Overview

• Part 1: The motivation

• Part 2: Characterising uncertainty

• Part 3: Network expansion problem with transmission switching

• Part 4: Demo
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The many approaches to optimisation under uncertainty I

• To paraphrase von Neumann:
uncertainty characterisation is like a non-elephant

• There are very many approaches to optimisation under uncertainty

• Even if you do the distributional forecasting well,
you get one solution for stochastic programming with 3 scenarios, one
for stochastic programming with 4 scenarios, one solution for the
usual robust optimisation, one for Bertsimas-Sim with the budget
Γ = 3, one with the budget Γ = 4, ...

• The solutions can be evaluated with respect to a number of key
performance indicators (KPIs), but none very likely dominates all
others.

• You need to pick exactly one.

The quote on control and elephants is attributed to John von Neumann.
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The many approaches to optimisation under uncertainty II

There are a number of varieties in optimisation under uncertainty:

• Aggregation of data, e.g. consider ranges corresponding to supports
of probability distributions

• Aggregation of solutions, e.g. average over the solutions obtained for
each scenario, deterministically

• Hybrids, e.g. take a small range around the values in each scenario,
average over the solutions thus obtained

which proceed in two steps:

• You solve one or more instances of (integer) convex deterministic
optimisation, a.k.a. robust counterparts, scenario expansions

• You map the solutions of the deterministic instance(s) back to
solutions of the problem in optimisation under uncertainty.
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The many approaches to optimisation under uncertainty III

Ref. Authors Captures

Aggregation-of-Data Approaches (aka. Robust)
[14] Soyster Interval uncertainty for inequalities
[1] Ben-Tal-Nemirovski Ellipsoidal uncertainty
[10] ElGhaoui et al. Worst-case value-at-risk (VaR)
[3] Bertsimas-Sim L0 budget of uncertainty
[9] Fischetti-Monaci Budget of uncertainty wrt. the objective

Sampling-of-Data Approaches (aka. Stochastic)
[7] Dembo Sample and optimise
[6] Dantzig Two-stage stochastic opt.
[5] Campi-Garatti Chance-constrained opt.

c© 2014 IBM Corporation



IBM Research - Ireland

The many approaches to optimisation under uncertainty IV

Ref. Authors Captures

Hybrid approaches
[12] Mulvey-Vanderbei-Zenios Penalty for cons. violation
[4] Möhring et al Recoverable Robustness

Calafiore-El Ghaoui Distributional robustness
[13] Natarajan-Pachamanova-Sim Discrete Conditional VaR
[8] Fischetti-Monaci Light Robustness
[2] Ben-Tal et al. Soft robustness
[2] Ben-Tal et al. Comprehensive robustness
[11] Mareček Mixed criticality
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Since 2013

IBM Software:

• IBM ILOG CPLEX is a library of optimisation routines

• IBM ILOG Decision Optimisation Center is a “platform for building
and deploying analytical decision support applications”. It connects
data in a SQL database to an algebraic model, such that the solving is
performed remotely, in a distributed fashion, and such that custom
user interfaces are easy to develop.

N.B. Decision Optimisation Center will be presented by Alex Fleischer.

A 2013 joint program of IBM Research and Decision Optimization:

• A user-friendly toolkit as plug-in to Decision Optimization Center

• Built-in automated reformulation

Information about the joint programme are quoted from [Kawas et al., IFORS 2014].
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The Key Idea

• The ’recipe’ captures the uncertainty characterization for a given
deterministic algebraic optimization model

• Automated reformulation of the deterministic algebraic optimization
model based on the ’recipe’ and a number of scenarios.

• Using a single deterministic algebraic optimization model and one set
of scenarios, multiple ’recipes’ give you multiple solutions hedging
against uncertainty in various ways.

• An advanced user can devise the “recipe” using a wizard

• Any user apply use “the recipe” using another wizard

• Any user can compare multiple solutions hedging against uncertainty
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The Wizard I

From the presentation of [Kawas et al., IFORS 2014]
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The Wizard II

From the presentation of [Kawas et al., IFORS 2014]
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The Investment Planning

• OECD: Global infrastructure spending is estimated at USD 2.2T p.a.

• EDF invested circa EUR 12B, while RTE invested EUR 1.45B in 2013

We consider:

• Investment into switching equipment and line capacity in an electricity
distribution system employing dynamic reconfiguration of the network
topology

• Minimisation of capital and operational cost with respect to uncertain
load and generation scenarios

• Maximisation of reliability with respect to line failures

• A two-stage problem with discrete decisions at both stages.

Investment figures from 2013 annual reports of EDF and RTE
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The Investment Planning: The Objective

• Amortised investment costs fL for line capacity

• Amortised investment costs fS for switching equipment

• Probability πk of scenario k ∈ K

• Operational decisions Qk feasible in scenario k ∈ K

• Operational costs ck in scenario k ∈ K

• Reliability rk in scenario k ∈ K (e.g. SAIFI)

min fSxS + fLxL +
∑
k∈K

πk

(
c>k qk + rk(qk)

)
(1)

s.t. xL − xS + yk 6 1 ∀k ∈ K (2)

xL + yk > 1 ∀k ∈ K (3)

(yk , qk) ∈ Qk ∀k ∈ K (4)

xS , xL ∈ {0, 1}|A| (5)
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The Investment Planning: The Constraints Qk

• A steady-state model within each time period, i.e. with constant
current injection and loads

• A rudimentary piece-wise linearisation of the ACOPF,
i.e. linear outer approximations and disjunctive constraints

Formulation 1 (based on Ferreira et al., 2013):

• Rectangular current-voltage formulation with switchable lines

• Power injection p̂ + jq̂

• Current injection I = p̂µ+ q̂ν + j(q̂µ− p̂ν)
where µ = v

v2+u2 and ν = u
v2+u2 .

Formulation 2 (based on Trodden et al., 2013):

• Polar power-voltage formulation with switchable lines

• Linearised sine function and piece-wise linearised cosine
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The Investment Planning: Formulation 1

• Piece-wise linearisation at evaluation points (v̂ , û) with values µ, ν:

vi =
∑
j ,k

v̂ ji λ
jk
i ui =

∑
j ,k

ûki λ
jk
i e>λ = 1

µi =
∑
j ,k

µ̂jki λ
jk
i νi =

∑
j ,k

ν̂ jki λ
jk
i

• The SOS2 constraints:

λjk 6 ψj−1 + ψj ,∀j ∈ J \ {0}
λjk 6 χk−1 + χk , ∀k ∈ K \ {0}
λj ,0 6 ψ0 λ0,k 6 χ0

e>ψ = e>χ = 1 ψ, χ ∈ {0, 1}

where J is the index set of points v̂ and K is the index set of points
û. ψj = 1 iff v is in

[
v̂ j , v̂ j+1

]
, and χk = 1 iff u is in

[
ûk , ûk+1

]
.
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The Investment Planning: Formulation 2

Power balance equations in the polar formulation:

• Pi = +
∑N

k=1 |Vi ||Vk |(Gik cos θik + Bik sin θik)

• Qi =
∑N

k=1 |Vi ||Vk |(Gik sin θik − Bik cos θik)

Linearised sine function and piece-wise linearised cosine:

• sin(θij) linearised by θij

• cos(θij) piece-wise linearised (instead of 1)

• V 2
i linearised to 2vi − 1

• vivj cos(θij) approximated by vivj + cos(θij)− 2

• vivj sin(θij) approximated by θij
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Illustrations: 4-Bus Network, AC v. PWL
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Illustrations: Graver’s Network, PWL v. DC
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Illustrations: IEEE 14-Bus, Optimum Switching
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Illustrations: IEEE 14-Bus, PWL Expansion vs. 0 for DC
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The Demo
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The Conclusions

• It is important to know what uncertainty characterisation works best

• ... but it is hard to learn that without the appropriate tools.
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