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Outline for the Day

9:15-10:15. lecture (Lee): Introduction to MINLP // Complexity
of MINLP: Hardness and polynomial tractability

10:15-11:00. coffee break

11:00-12:00. lecture (Lodi): General-purpose algorithms for convex
and non-convex MINLP

12:00-14:15. lunch

14:15-15:00. lecture (Lee): Non-convex quadratic MINLP

15:00-15:30. coffee break

15:30-16:15. lecture (Lodi): Software and computational advances

16:15-16:30. short break

16:30-17:00. problem session
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O - Introduction to MINLP

I - Complexity of MINLP

Hardness and polynomial tractability
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Nonlinear Integer/Discrete Optimization

max / min { f (x) : x ∈ F } ,

where f : Rn ⇒ R, and F is countable (and often finite).
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Nonlinear Integer/Discrete Optimization

max / min { f (x) : x ∈ F } ,

where f : Rn ⇒ R, and F is countable (and often finite).

Immediate questions:

What are the applications? What are NOT the applications?!
◮ max / min(x,y) { g(x , y) : h(x , y) ≤ 0, x ∈ F } ⇒

For x ∈ F , let f (x) := max / miny { g(x , y) : h(x , y) ≤ 0 }
What kind of objectives f are we interested in? How do we receive
f ?

What kind of feasibility sets F are we interested in? How do we
receive F ?

What are we trying to achieve? Theory? Practicality?
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What can we hope to achieve?

An optimal solution (and an optimality certificate)

The O.R./Math-Opt offering: A feasible solution and an
optimality bound — no a priori bound on the bound, and often no
efficiency guarantee

The Theoretical C.S. offering: A feasible solution with an a priori
approximation guarantee (e.g., a (1 − ǫ)-approximation or a k-best
solution) and an efficiency guarantee

A publication

What solution time can we afford?

Theory: Polynomial time? — with respect to to what kind of
encoding?

Practice: A few seconds? minutes? hours? days? weeks?
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Applications to drive advances in methodology

Unit commitment problems with ramp-up costs; separable convex
continuous nonlinearities — a first step up from MILP.

(Water and gas) delivery network planning with physics; difficult
continuous nonlinearities.

Portfolio optimization with cardinality constraints; (convex?)
continuous quadratics and sparse optimization.

Combinatorial optimization on graphs; quadratric binary
problems.

Microelectronics imaging some distance-geometry problems;
global-optimization of low-order polynomials.

Difficult counting functions; rank of a matrix.

Submodular optimization (a bridge from cuts to difficult
inseparable and black-box functions).

... Advances in methodology to make applied impact
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A prologue of approaches
Heuristic approach (driven mostly by “local” ideas to quickly find
good solutions to practical instances)
Algorithmic engineering driven by mathematics, with the solution
of practical instances in mind:

◮ Refining and subdividing relaxations (employ convex geometry of
inequalities in real variables)

⋆ Operations-research approach I: B&B, Outer approx, hybrid
approaches [aimed at finding optima of convex instances] (e.g.,
Bonmin)

⋆ Operations-research approach II: Spatial B&B/Global optimization
[aimed at finding optima of nonconvex instances] (e.g., Baron,
Couenne)

⋆ May hybridize these OR approaches with CP techniques
◮ Algebraic approach: Model via a system of polynomial equations in

complex variables which is attacked via methods of algebraic
geometry (e.g., De Loera, Lee, Margulies, Malkin, Onn have had
success on graph coloring problems with up to 2000 vertices)

Theoretical computer science approach: restrict problem classes to
find efficient exact and approximation algorithms or prove
hardness...keeping in mind the applications!
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An aside: The mathematical optimization (O.R.) view
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Classification of nonlinear discrete optimization

Objective function:

Linear=⇒ Mildly
nonlinear

=⇒
Very

nonlinear
(explicit)

=⇒
“Arbitrary”

nonlinear
(Oracle?

Simulation?)

J. Lee MINLP Klagenfurt 9 / 61



Classification of nonlinear discrete optimization

Objective function:

Linear=⇒ Mildly
nonlinear

=⇒
Very

nonlinear
(explicit)

=⇒
“Arbitrary”

nonlinear
(Oracle?

Simulation?)

Encoding:

Unary encoding;
a1, . . . , ap-encoding

=⇒ Binary encoding

J. Lee MINLP Klagenfurt 9 / 61



Classification of nonlinear discrete optimization

Objective function:

Linear=⇒ Mildly
nonlinear

=⇒
Very

nonlinear
(explicit)

=⇒
“Arbitrary”

nonlinear
(Oracle?

Simulation?)

Encoding:

Unary encoding;
a1, . . . , ap-encoding

=⇒ Binary encoding

Feasible set description:

Structured constraints
(Explicit? Oracle?)

=⇒
Unstructured constraints

(Explicit?
Oracle?/

simulation?
)
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Reduced-dimension nonlinear discrete opt
Given finite F ⊂ Z

n , weight matrix W ∈ Z
d×n and function

f : Rd → R , solve

P(F , f , W ) : min / max {f (Wx) : x ∈ F}
Motivation is multi-objective optimization, where f trades off

the linear functions describes by the rows of W

J. Lee MINLP Klagenfurt 10 / 61



Reduced-dimension nonlinear discrete opt
Given finite F ⊂ Z

n , weight matrix W ∈ Z
d×n and function

f : Rd → R , solve

P(F , f , W ) : min / max {f (Wx) : x ∈ F}
Motivation is multi-objective optimization, where f trades off

the linear functions describes by the rows of W
Typical assumptions to gain theoretical efficiency:

fixed d (d ≤ n)

f given by a ‘comparison oracle’
encoding of W :

◮ unary encoded
◮ Wi,j ∈ {a1, . . . , ap} (p fixed, ai binary-encoded positive integers)
◮ generalized unary:

∑p
i=1 λiai , with λi unary encoded

F given via different oracles:
◮ (poly)matroids,
◮ multi-knapsacks
◮ matchings

F ⊂ {x ∈ Z n : −β1 ≤ x ≤ β1}, unary encoded β
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Theorem (Max Cut)

Pure continuous polynomial optimization over polytopes in varying
dimension is NP-hard. Moreover (Hastad), there does not exist a fully
polynomial-time approximation scheme (FPTAS) (unless P = NP)

Theorem (see De Loera, Hemmecke, Köppe, Weismantel)

The problem of minimizing a degree-4 polynomial over the lattice points
of a convex polygon is NP-hard.

Theorem (Jeroslow)

The problem of minimizing a linear form in integer variables over
quadratic constraints is not computable by a recursive function.

Theorem (see De Loera, Hemmecke, Köppe, Weismantel)

The problem of minimizing a linear form in at most 10 integer variables
over polynomial constraints is not computable by a recursive function.
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Intractability of reduced-dimension nonlinear discrete

opt
d = 1 , binary-encoded W is provably intractable (even for
W := (1, 2, 4, . . . , 2n−1), f given by a comparison oracle, F the
incidence vectors of bases of a graphic or uniform matroid)
d = n , W = I is provably intractable (even for f given by a
comparison oracle, F the incidence vectors of bases of a graphic or
uniform matroid)

In both cases we can have Wx and hence f (Wx) take on a
distinct value for each x ∈ F, and |F| is exponentially large
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W := (1, 2, 4, . . . , 2n−1), f given by a comparison oracle, F the
incidence vectors of bases of a graphic or uniform matroid)
d = n , W = I is provably intractable (even for f given by a
comparison oracle, F the incidence vectors of bases of a graphic or
uniform matroid)

In both cases we can have Wx and hence f (Wx) take on a
distinct value for each x ∈ F, and |F| is exponentially large

Given binary encoded u ∈ Z and W ∈ Z
1×n , it is NP-complete to

determine

if there is an x ∈ F such that Wx = u , or
whether the minimum, over x ∈ F , of the simple convex function
f (x) = (Wx − u)2 is zero,

(even for F the incidence vectors of bases of a graphic or uniform
matroid)
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Well-described independence systems

Definition

F is well described (via linear inequalities) in the sense of GLS
≡ linear optimization over F can be done efficiently

Definition

F ⊆ {0, 1}n is an independence system if for x, y ∈ {0, 1}n ,

x ≤ y ∈ F =⇒ x ∈ F .

Example

forests of a graph, independent sets of a matroid

(poly)matroids

matchings of a graph

small multi-knapsacks

stable sets of certain graphs (e.g., perfect ⊃ bipartite;
claw-free ⊃ quasi-line ⊃ line)
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Intractability

Theorem (Lee, Onn, Weismantel ’09)

There is no efficient algorithm for computing an optimal solution of the
one-dimensional nonlinear optimization problem min{f (w′x) : x ∈ F}
over a well-described independence system, F , with f presented by a
comparison oracle, and single weight vector w ∈ {2, 3}n .
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There is no efficient algorithm for computing an optimal solution of the
one-dimensional nonlinear optimization problem min{f (w′x) : x ∈ F}
over a well-described independence system, F , with f presented by a
comparison oracle, and single weight vector w ∈ {2, 3}n .

Theorem (Lee, Onn, Weismantel ’11)

There is a universal constant ρ such that no efficient algorithm can
compute a “ρn-best solution” of the 2-dimensional nonlinear discrete
optimization problem min{f (Wx) : x ∈ S} over every well-described
independence system F ⊆ {0, 1}n , with W an integer 2 × n weight
matrix each column of which is one of the unit vectors in Z

2, and f an
explicit function supported on {0, 1, . . . , n}2.

Proof.

uses an extended Erdős-Ko-Rado theorem of Frankl
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Efficiency for well-described F
Theorem (Berstein, Lee, Onn, Weismantel ’10)

When F is well described, f is quasi-convex def , and W has a
fixed number of rows and is unary encoded over binary encoded
{a1, . . . , ap}, we have an efficient deterministic algorithm for
maximization
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When F is well described, f is quasi-convex def , and W has a
fixed number of rows and is unary encoded over binary encoded
{a1, . . . , ap}, we have an efficient deterministic algorithm for
maximization

When F is well described, f is a norm, and W is binary-encoded,
we have an efficient deterministic constant-approximation
algorithm for maximization. (The approx factor depends on the
norm, hence on the number of rows of W , while the running time
increases only linearly in the number of rows)

When non-negative F is well described, f is “ray concave” def

and non-decreasing, and non-negative W has a fixed number of
rows and is unary encoded over binary encoded{a1, . . . , ap}, we
have an efficient deterministic constant-approximation algorithm
for minimization.

J. Lee MINLP Klagenfurt 15 / 61
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d
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Definition

A function f : Rd
+ → R is ray-concave if

λf (u) ≤ f (λu) for u ∈ R
d
+ , 0 ≤ λ ≤ 1

Ordinary concavity of a function f has the special case:

λf (u) + (1 − λ)f (0) ≤ f (λu + (1 − λ)0) , for u ∈ R
d
+ , 0 ≤ λ ≤ 1 ,

so if f is concave with f (0) = 0 , then it is ray-concave.

Example

every norm is both ray concave and ray convex on R
d
+ .

f (u) :=
∏d

i=1 ui is ray convex on R
d
+ .

f (u) := min(u1, u2) is ray concave on R
2
+ .

return
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Efficiency for well-described independence systems

Theorem (Lee, Onn, Weismantel ’09)

For every primitive p-tuple a = (a1, . . . , ap) , there is a constant r(a)
and an algorithm that, given any well-described independence system
F ⊆ {0, 1}n , a single weight vector w ∈ {a1, . . . , ap}n , and function
f : Z → R presented by a comparison oracle, we give an efficient
deterministic algorithm for finding an “r(a)-best solution” (to the
one-dimensional optimization problem max / min{f (w′x) : x ∈ F}).
Moreover:

If ai divides ai+1 for i = 1, . . . , p − 1 , then the algorithm provides
an optimal solution.

For p = 2 , that is, for a = (a1, a2) , the algorithm provides an
Fr(a)-best solution. In particular, for a = (2, 3) we give a 1-best
solution, while a finding 0-best solution is provably exponential.
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Efficiency for quasi-convex discrete polynomial opt

Theorem (Bank et al. ’91,’93)

Let f , g1, . . . , gm ∈ Z[x1, . . . , xn ] be quasi-convex polynomials of degree at
most d ≥ 2, with coefficients having a binary encoding length of at
most ℓ. Let

F =
{

x ∈ R
n : gi(x) ≤ 0 for i = 1, . . . , m

}

be the (continuous) feasible region. If the integer minimization problem
min{ f (x) : x ∈ F ∩ Z

n } is bounded, there exists a radius R ∈ Z+ of
binary encoding length at most (md)O(n)ℓ such that

min
{

f (x) : x ∈ F ∩ Z
n
}

= min
{

f (x) : x ∈ F ∩ Z
n, ‖x‖ ≤ R

}
.

Theorem (Heinz ’05)

Let f , g1, . . . , gm ∈ Z[x1, . . . , xn ] be quasi-convex polynomials of degree at
most d ≥ 2, with coefficients having a binary encoding length of at
most ℓ. There exists an algorithm running in time mℓO(1)dO(n)2O(n3)

that computes a minimizer x∗ ∈ Z
n or reports that no minimizer exists.
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FPTAS for polynomial optimization in fixed dimension

An algorithm is a PTAS (for a max problem) if for all fixed ǫ > 0,
in polynomial-time the algorithm finds a feasible solution of value
within a factor of (1 − ǫ) of the optimal value
A FPTAS is a PTAS where the running time is polynomial in 1/ǫ
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convex polytope, where A is an m × n integral matrix and b is an
integral m-vector.
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within a factor of (1 − ǫ) of the optimal value
A FPTAS is a PTAS where the running time is polynomial in 1/ǫ

Consider
max f (x1, . . . , xn) s.t. x ∈ P ∩ Z

n, (1)

where f is a polynomial of total degree D and P = {x|Ax ≤ b} is a
convex polytope, where A is an m × n integral matrix and b is an
integral m-vector.

Theorem (De Loera, Hemmecke, Köppe, Weismantel ’06)

Obtain an increasing sequence of lower bounds {Lk} and a decreasing
sequence of upper bounds {Uk} to the optimal value. The bounds can be
computed in time polynomial in k , the input size of P and f , and the
maximum total degree D and they satisfy the inequality
Uk − Lk ≤ f ∗( k

√
|P ∩ Zn| − 1). More strongly, if f is nonnegative on P,

this gives an FPTAS.
J. Lee MINLP Klagenfurt 19 / 61



Some references

Raymond Hemmecke, Matthias Köppe, Jon Lee, Robert
Weismantel, Nonlinear integer programming. In: M. Jünger, T.
Liebling, D. Naddef, G. Nemhauser, W. Pulleyblank, G. Reinelt,
G. Rinaldi, and L. Wolsey (eds.), “50 Years of Integer
Programming 1958-2008: The Early Years and State-of-the-Art
Surveys,” Springer-Verlag, 2010, pp. 561–618.

Shmuel Onn, Nonlinear Discrete Optimization: An Algorithmic
Theory. Zürich Lectures in Advanced Mathematics, European
Mathematical Society, x+137 pp., September 2010.

Mixed-Integer Nonlinear Programming and Applications, Jon Lee
and Sven Leyffer, eds. IMA Volume 154, 692 pages. Frontier
Series, Springer Science + Business Media, LLC, 2012.

J. Lee MINLP Klagenfurt 20 / 61



III - Non-convex quadratic MINLP

Disjunctive cuts and reformulation for spatial B&B

J. Lee MINLP Klagenfurt 21 / 61



Some references

Polynomially-solvable cases of quadratic integer minimization
◮ J. Lee, S. Onn, L. Romanchuk, R. Weismantel. The Quadratic Graver Cone, Quadratic

Integer Minimization, and Extensions, Math. Prog., Series B, 136:301–323, 2012.

Disjunctive cuts based on dynamically identifying 1-d concavity.
◮ A. Saxena, P. Bonami, J. Lee. Convex relaxations of non-convex mixed integer quadratically

constrained programs: Extended formulations, Math. Prog., B, 124:383–411, 2010.

◮ A. Saxena, P. Bonami, J. Lee. Convex relaxations of non-convex mixed integer quadratically

constrained programs: Projected formulations, Math. Prog., A, 130:359–413, 2011.

Exploiting separable concavity.
◮ C. D’Ambrosio, J. Lee, A. Wac̈hter. An algorithmic framework for MINLP with separable

non-convexity. In: "Mixed Integer Nonlinear Programming", S. Leyffer and J. Lee, Eds., The

IMA Volumes in Mathematics and its Applications, 154:315–347, 2012.

◮ M. Fampa, J. Lee, W. Melo. On global optimization with indefinite quadratics. Preprint,

2014.

J. Lee MINLP Klagenfurt 22 / 61



III - Non-convex quadratic MINLP

Disjunctive cuts and reformulation for spatial B&B

J. Lee MINLP Klagenfurt 23 / 61



Secant cut
Our starting point is the equation X = xx ′ . Let c ∈ R

n be arbitrary
(for now). We have the equation

Tr(X(cc′)) = Tr(xx ′(cc′)) = (c′x)2 ,

which we relax as the concave inequality

(c′x)2 ≥ Tr(X(cc′)) . (Ω)

Next, let P be a relaxation of our feasible region. Let

ηL(c) := min
{
c′x : (x, X) ∈ P

}

and
ηU (c) := max

{
c′x : (x, X) ∈ P

}
.

That is, [ηL, ηU ] is the range of c′x as (x, X) varies over the relaxation
P . We can convexify to obtain the (linear) secant cut

(c′x) (ηL(c) + ηU (c)) − ηL(c)ηU (c) ≥ Tr(X(cc′)) (SC )
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Figure 1: Secant cut from a concave quadratic

ηL(c) = min
(x,X)∈P

c′x ηU (c) = max
(x,X)∈P

c′x

{Tr(X(cc′)) ≤ (c′x)2}

secant cut
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A disjunction

Secant inequalities are valid cutting planes, and we may use them. But
we can do better, at some computational cost. We choose a value
θ ∈ (ηL, ηU ) (e.g., the midpoint), and we get the disjunction:

{
(x, X) ∈ P :

ηL(c) ≤ c′x ≤ θ
(c′x)(ηL(c) + θ) − θηL(c) ≥ Tr(X(cc′))

}

or
{

(x, X) ∈ P :
θ ≤ c′x ≤ ηU (c)
(c′x)(ηU (c) + θ) − θηU (c) ≥ Tr(X(cc′))

}
.

Notice that the second part of the first (resp., second) half of the
disjunction corresponds to a secant inequality over the interval between
the point θ and the lower (resp., upper) bound for c′x .
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θ

Figure 2: A disjunction of secant cuts

ηL(c) = min
(x,X)∈P

c′x ηU (c) = max
(x,X)∈P

c′x

{Tr(X(cc′)) ≤ (c′x)2}

secant cut
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We have already seen how for any c ∈ R
n , (Ω) is a valid concave

inequality. Now we will see how to use available information to get a
violated inequality of this type. If we have a point (x̂ , X̂) that satisfies
the semidefiniteness constraint X − xx ′ � 0 , but for which X̂ is not
equal to x̂ x̂ ′ , then it is the case that X̂ − x̂ x̂ ′ has a positive eigenvalue
λ . Let c denote a unit-length eigenvector belonging to λ . Then

λ = λ‖c‖2
2

= Tr(λ(cc′))

= Tr((X̂ − x̂ x̂ ′)(cc′)) .

So, λ > 0 if and only if (c′x̂)2 < Tr(X̂(cc′)) . That is, every positive
eigenvalue of X̂ − x̂ x̂ ′ yields an inequality of the form (Ω) that is
violated by (x̂ , X̂) .
Now, we cannot directly include such a violated inequality, or we would
destroy the convexity of our relaxation; so we appeal to a technique of
disjunctive programming...
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Disjunctive-cut approach

Let’s suppose that our relaxation P is polyhedral. Let x̃ denote a
“vectorized” (x, X). So let

P := {x̃ ∈ R
N : Ax̃ ≥ b}

Next, given our disjunction

D1 := {x̃ ∈ P : D1x̃ ≥ d1} or D2 := {x̃ ∈ P : D2x̃ ≥ d2},

and a point ˆ̃x ∈ P , our goal is to separate ˆ̃x from

Q := convcl (D1 ∪ D2)

with a valid linear inequality α′x̃ ≥ β .
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The disjunctive cut and the CGLP

min α′ˆ̃x − β
α = A′u1 + D′

1v1

α = A′u2 + D′
2v2

β ≤ b′u1 + d ′
1v1

β ≤ b′u2 + d ′
2v2

u1 , v1 , u2 , v2 ≥ 0
( ‖(u1, v1, u2, v2)‖1 = 1 ) .

(CGLP)

To see that a feasible solution of (CGLP) corresponds to a valid
inequality α′x̃ ≥ β , notice that

α′x̃ = u′
iAx̃ + v′

iDi x̃ ≥ u′
ib + v′

idi ≥ β ,

for i = 1, 2 . A violated linear inequality exists and is found precisely
when the minimum of (CGLP) is negative.
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θ

Figure 3: Disjunctive cut from a concave quadratic

ηL(c) = min
(x,X)∈P

c′x ηU (c) = max
(x,X)∈P

c′x

{Tr(X(cc′)) ≤ (c′x)2}

secant cut

disjunctive cut
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Our problem:

z := min f0(x) + q0(x) ,

fi(x) + qi(x) ≤ 0 , i = 1, 2, . . . , m ;

x ∈ X ,

fi : Rn → R are convex ,
qi(x) = 1

2x ′Qix ,
X is described in a tractable manner by convex functions and possibly
integrality restrictions.

But here we focus on:

z := min f (x) + q(x) , (I)

x ∈ X .
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Main steps of our methodology

Decompose q(x) := 1
2x ′Qx , into a D.C. (Difference of Convex)

quadratic functions:

q(x) :=
1

2
x ′Px − 1

2
x ′Rx , (P, R � 0).

Underestimate the concave term by a linear function in order to
get a convex relaxation of the problem.

Apply a spatial branch-and-bound algorithm, exploiting convexity
of q (extracted into 1

2x ′Px) as much as possible.
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Preprocessing via D.C. decompositiion

Decompose Q:
Q = P − R , (P, R � 0).

Calculate the real Schur decomposition of R:

R =
∑

i∈N

λiviv
′
i , where λi > 0 for i ∈ N ,

Define:
yi :=

√
λiv

′
ix , for i ∈ N .
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Problem reformulation, isolating the concavity

separably:

z = min f (x) +
1

2
x ′Px − 1

2

∑

i∈N

y2
i , (̃I)

x ∈ X ,

yi =
√

λiv
′
ix , for i ∈ N ,

ly ≤ y ≤ uy ,

where

lyi
:=

√
λi min v′

ix ,
x ∈ X ,

uyi
:=

√
λi max v′

ix ,
x ∈ X ,
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Our spatial branch-and-bound

Let:
ωi(yi) := −1

2y2
i ,

lyi
≤ yi ≤ uyi

.

The secant under-estimators:

−1

2

(
(yi − lyi

)
u2

yi
− l2

yi

uyi
− lyi

+ l2
yi

)
≤ wi .

Figure: Secant under-estimator for −y2 in [−2.5, −0.5]
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Subproblems are relaxations of Ĩ

z := min f (x) +
1

2
x ′Px +

∑

i∈N

wi , (̃I)

x ∈ X ,

yi =
√

λiv
′
ix , for i ∈ N ,

− 1

2

(
(yi − lyi

)
u2

yi
− l2

yi

uyi
− lyi

+ l2
yi

)
≤ wi , for i ∈ N ,

ly ≤ y ≤ uy .
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Or equivalently, eliminating yi :

z = min f (x) +
1

2
x ′Px +

∑

i∈N

wi , (I)

x ∈ X ,

− 1

2

((√
λiv

′
ix − lyi

) u2
yi

− l2
yi

uyi
− lyi

+ l2
yi

)
≤ wi , for i ∈ N ,

lyi
≤
√

λiv
′
ix ≤ uyi

, for i ∈ N .
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D.C. decomposition strategies

Our goal: Analyze how different D.C. decompositions affect the
global solution of the problem.
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D.C. decomposition strategies

Our goal: Analyze how different D.C. decompositions affect the
global solution of the problem.

Our focus: Minimize the concavity of the D.C. decomposition.

Our methodology: Compare different measures for the concavity,
that lead to different decompositions of the indefinite matrix Q.
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Diagonal decompositions (i.e., R is diagonal)

One advantage: No presence in the subproblems of the dense
inequalities

lyi
≤
√

λiv
′
ix ≤ uyi

, for i ∈ N .
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1. Diagonally Dominant

ri := max




0, − qii +
∑

j:j 6=i

|qij |




 , i = 1, 2, . . . , n.

R := Diag(r1, r2, . . . , rn).

⇓

P := Q + R is diagonally dominant.
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2. Identity

R := − min{0, λn} I ,

where λn is the least eigenvalue of Q .

⇓

P := Q + R � 0.
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3. Diagonal SDP

min
n∑

i=1

ri , (D-SDP)

P := Q + Diag(r) � 0 ,

r ∈ R
n
+ ,

⇓

R := Diag(r) , the diagonal matrix with minimum trace.
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Non-diagonal decompositions (i.e., R may be

non-diagonal)

Hope to capture more convexity into P

But must deal with dense equations

And would expect these better decompositions would be more
expensive to calculate
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1. Real Schur Decomposition

Calculate the Real Schur Decomposition of Q

Q =
n∑

i=1

λiviv
′
i .

Decompose Q
Q = P − R ,

where

P :=
∑

i∈P

λiviv
′
i , where λi > 0 for i ∈ P ,

R :=
∑

i∈N

(−λi)viv
′
i , where λi < 0 for i ∈ N .
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2. Non-diagonal decompositions via SDP

Let m1 ≥ m2 ≥ · · · mk > 0 =: mk+1.

min

k∑

i=1

miλi(R) , (WESDP)

P := Q + R � 0 ;

R � 0 ,

If k := n, mi := 1 , ∀i , Tr(R) is minimized .

If k := 1, m1 := 1 , λmax(R) is minimized.

If m1 >> · · · >> mn > 0 , R has a lexically-minimum list of eigenvalues.

Theorem

For any given parameters mi, i = 1, . . . , k, such that m1 ≥ m2 ≥ · · · mk > 0 =: mk+1,
the splitting determined by the Real Schur Decomposition solves the
weighted-eigenvalue minimization problem (WESDP).
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Proof idea
Applying a result in [Alizadeh, 1993], we first establish

Lemma

(WESDP) is equivalent to the following dual pair of SDPs:

min
∑k

i=1 izi +
∑k

i=1 Tr(Vi) , (PSDP)

ziI + Vi − (mi − mi+1)R � 0 , i = 1, 2, . . . , k ;

Q + R � 0 ;

R � 0 ;

Vi � 0 , i = 1, 2, . . . , k .

max Q • X , (DSDP)

Tr(Yi) = i , i = 1, 2, . . . , k ;
∑k

i=1(mi − mi+1)Yi + X � 0 ;

0 � Yi � I , i = 1, 2, . . . , k ;

X � 0 .
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Computational experiments: Goals

Comparison of four different decompositions as preprocessing at
the root problem of the spatial branch-and-bound

◮ Diagonally Dominant (D-Dom).
◮ Identity (Identity).
◮ Diagonal SDP (D-SDP).
◮ Real Schur Decomposition (RSD).

Comparison of our methods with Couenne.
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Computational experiments: Our setup

iquad - our C++ coded software.

Mosek - for solving convex QP relaxations and SDPs for decomposing Q.

Lapack/Blas - for calculating eigenvalues and Real Schur Decompositions.

Flux computing cluster at the University of Michigan - processors operating at
2.6 GHz, each can access up to 48GB of RAM (we mostly used no more than
4GB). Each run executed on a single processor.

Time limit - 2 hours per instance.

Absolute(relative) convergence tolerance: 10−4(10−3).
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Test problems

BoxQ - 99 randomly generated box-constrained quadratic programs with Q of
various density, 20 ≤ n ≤ 125.

R-BiqMac - 343 problems from the Biq Mac Library, where the integrality
constraints are relaxed (box-constrained quadratic programs), 30 ≤ n ≤ 500.

GLOBALLib - 83 problems from GLOBALLib with non-convex quadratic
objective function and linear constraints, 2 ≤ n ≤ 79.

Random - 60 randomly generated problems with non-convex quadratic
objective function and linear constraints n = 20, 40, 60, 80, 100. Number of
linear constraints - 1.5n.
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Splitting Strategy
Test-Bed Time(m) RSD D-SDP D-Dom Identity Couenne

R-BiqMac 30 0.29 9.04 4.37 2.62 47.23
60 0.58 11.08 4.37 2.92 48.10
90 0.87 12.54 4.37 3.50 48.10
120 0.87 12.83 4.66 3.50 48.40

BoxQP 30 13.13 61.62 9.09 50.51 30.30
60 14.14 65.66 11.11 51.52 32.32
90 17.17 65.66 12.12 52.53 33.33
120 17.17 68.69 14.14 52.53 33.33

GLOBALLib 30 100.00 100.00 97.59 100.00 75.90
60 100.00 100.00 97.59 100.00 75.90
90 100.00 100.00 97.59 100.00 75.90
120 100.00 100.00 97.59 100.00 75.90

Random 30 76.67 23.33 15.00 3.33 48.33
60 78.33 25.00 18.33 5.00 48.33
90 83.33 26.67 26.67 5.00 48.33
120 83.33 28.33 26.67 5.00 48.33

Table: Percentage of problems solved (%)



R-BiqMac - iquad doesn’t succeed for any splitting strategy. Couenne is more
successful, although it solves less than 50% of the problems in 2 hs.

BoxQP - iquad/D-SDP is the best method. Identity is a good alternative: It is
better than Couenne and not much worse than D-SDP.

GLOBALLib - iquad is very good for all splitting strategies, better than
Couenne.

Random - iquad/RSD is the best method.

Overall the problem categories, D-SDP almost always dominates D-Dom and
Identity.

RSD performs well on instances with linear constraints, being the best
alternative on GLOBALLib and Random. RSD doesn’t present good results for
R-BiqMac and BoxQP. In this case, the diagonal splitting strategies are better.
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Splitting Strategy
Test-Bed Time(m) RSD D-SDP D-Dom Identity

R-BiqMac 30 99.50 1.02 19.27 7.13
60 99.16 1.00 19.92 7.19
90 98.84 0.98 20.21 7.21
120 98.81 0.97 20.59 7.24

BoxQP 30 81.53 0.19 41.03 0.69
60 78.98 0.17 40.91 0.63
90 77.98 0.15 40.48 0.60
120 77.44 0.14 39.87 0.58

GLOBALLib 30 0.00 0.00 2.41 0.00
60 0.00 0.00 2.41 0.00
90 0.00 0.00 2.41 0.00
120 0.00 0.00 2.41 0.00

Random 30 0.03 8.54 26.10 93.33
60 0.03 8.11 25.06 91.67
90 0.02 7.89 23.44 91.67
120 0.02 7.75 23.05 91.67

Table: Normalized gap (%)



R-BiqMac - D-SDP is the best decomposition strategy, when considering the
gap for unsolved problems, and the percentage of problems solved.

BoxQP - D-SDP is the best decomposition strategy, when considering the gap
for unsolved problems, and the percentage of problems solved. Identity also
presents good results.

GLOBALLib - D-Dom is the worst decomposition because of the big gaps left
for the small number of unsolved problems.

Random - RSD wins over all other methods, leaving small gaps for unsolved
problems.
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Thanks!... Questions?
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Definition

The Frobenius number is the largest value b for which the Frobenius
equation a1x1 + a2x2 + · · · apxp = b has no solution in non-negative
integers.
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Definition

The Frobenius number is the largest value b for which the Frobenius
equation a1x1 + a2x2 + · · · apxp = b has no solution in non-negative
integers.

Coinage as reformed by Augustus c. 23 BCE (1 gold aureus=25 silver
denarii; 1 denarius=4 bronze sestertii; 1 sestertius=2 brass dupondii; 1
dupondius=2 copper asses; 1 as=2 bronze semisses; 1 semis=2 copper
quadrantes) return
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Definition

A function f : Rd → R is quasi convex if

f (λx + (1 − λ)y) ≤ max(f (x), f (y)) for x, y ∈ R
d , 0 ≤ λ ≤ 1

return
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Problem

Theorem

When F is well described, f is a norm, and W is binary-encoded, we
have an efficient deterministic constant-approximation algorithm for
maximization. (The approx factor depends on the norm, hence on the
number of rows of W , while the running time increases only linearly in
the number of rows). Note: For 1 ≤ p ≤ ∞, we get a

d
1
p -approximation.
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Problem

Theorem

When F is well described, f is a norm, and W is binary-encoded, we
have an efficient deterministic constant-approximation algorithm for
maximization. (The approx factor depends on the norm, hence on the
number of rows of W , while the running time increases only linearly in
the number of rows). Note: For 1 ≤ p ≤ ∞, we get a

d
1
p -approximation.

Prove it! The Algorithm:

1 For i = 1, . . . , d, solve max{|Wix
i | : x i ∈ vert(P)}.

2 Let ui := Wx i , for i = 1, . . . , d.

3 Output x i∗

such that f (ui∗

) = maxd
i=1 f (ui).
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Problem

Lemma

Let F be well described, and let P := conv(F). Let
c, Wd×n , u ∈ vert(W P) be binary encoded. Then, in polynomial time,
we can solve the “fiber-optimization problem”

max
{
c′x : Wx = u, x ∈ P ∩ Z

n
}

.
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.

Prove it! HINT: Think about the preimage of a face of W P.

(How the lemma gets used: when Wd×n has say a unary encoding and
d is fixed, we can compute the vertices of W P efficiently).
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