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Aim

Presenting models for addressing challenges for a long
term (e.g., 30 years time horizon) capacity expansion
planning in electricity generation and transmission
networks along the years of the time horizon.
Scope: Helping to decide on:

1 GEP: Type and mix of power generation sources (ranging
from less coal, nuclear and combined cycle gas turbine to
more renewable sources: hydroelectric, wind, solar,
photovoltaic, fossil fuels and biomass)

2 GEP: New power generation plant / farm location and
capacity

3 NEP: Location and capacity of new lines in the transmission
network

By considering a variety of risk averse measures for risk
management, and

Using a SDP matheuristic algo for problem solving.
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Goals to achieve. Helping on quantifying

GEP: Satisfying electricity demand in the service network
of the GenCo, and Maximizing different types of utility
criteria:

Benefits of using cleaner, safer and efficient (cheaper)
energy accessible to all the consumption nodes in the
network.

NEP: Eliminating existing technological and political
barriers
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GEP. Characteristics

Uncertainty, Multicriteria and Nonlinearity
A gigantic but well structured multicriteria multistage
SMINO problem with risk management.

Dynamic setting
Site location and capacity decisions
Current and candidate power generation plants / farms
energy transmission nodes, demand nodes)
Replicated networks (hydro valleys). E.g., EdF 50+ valleys,
some with 50 elements, see Charousset, COST WMINLP,
Paris, 2013.

Algorithmic framework for MINO under uncertainty in
dynamic setting, see LFE et al., WMINLP, Pittsburgh, 2014.

SMINO in Electricity Generation, see Charousset, COST
WMINLP, Paris, 2013.
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Uncertainty in GEP

A stage in time horizon: Consecutive years whose
constraint systems must be satisfied in an individual basis.

A gigantic multistage [non-symmetric] scenario tree. E.g.,
Brazilian power system: 120 periods, 20119 scenarios
(Sagastizabal MP’12).
It is required a combination of:

Sample scenario schemes
SMINO → Sequential SMILO
inexact node-based Decomposition algos
High Performance Computing
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Multicriteria in GEP

Maximizing NPV of expected investment (and consumer
stakeholders) goals over the scenarios along the time
horizon subject to risk reduction of the negative impact of
non-wanted scenarios on multiple types of utility objectives
and stakeholders:

Maximizing power share of cleaner, safer and efficient
-cheaper- energy accessible to all consumption nodes.
Generation Network reliability.
EC directives on environmental issues and others.
EU governments, etc.
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Some facts on European Renewable Energy Sources
(RES) Generation systems

EU has established aggressive emission reduction targets:
a 20 % (res. 27 %) reduction in greenhouse gases with
respect to 1990 levels by 2020 (res. 2030) (most of the
member countries are still far away from that targets) and
endorsing an objective of 80 % reductions by 2050.

See
epp.eurostat.ec.europa.eu/portal/page/portal/eurostat/home/.

So, vast amounts of new generation plants / farms are
expected to be built in the medium term future. A
substantial part of this new RES generation could probably
materialize in the near future. ’
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Some European projects on RES Generation systems

OWF: 5.3 GW installed in Europe (including London array,
1 GW). See EWEA. Wind in power. report 2012.

See Achim Woyte and 3E OffshoreGrid. An Intelligent
Energy Europe Project, 2009.

London Array. See www.londonarray.com.

NSCOGI. See www.The North Sea Countries’ Offshore
Grid Initiative.
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Deterministic mixed 0-1 optimization model

zEV = máx
∑

t∈T

(atx t + bty t)

s.t.
∑

t ′∈At

(At ′
t x t ′ + Bt ′

t y t ′) = ht ∀t ∈ T

x t ∈ {0,1}nx(t), y t ∈ R
ny(t) ∀t ∈ T .

(1)
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Math optim under uncertainty

Multistage scenario tree.

A stage of a given horizon is a set of consecutive time
periods (i.we., years) where the realization of the uncertain
parameters takes place.

A scenario is a realization of the uncertain parameters
along the stages of a given horizon.

A node for a given stage in the scenario tree has a 1-1
correspondence with the group of scenarios that have the
same realization of the uncertain parameters up to the
stage.

Nonanticipativity principle (Wets SIAM Review’74): The
scenarios of a group have a unique solution for the stage
which correspondent node belongs to.
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1
= {10,11, . . . , 17}; Ω2

= {10,11, 12}

G = {1, . . . , 17}; G2
= {2, 3,4}

A17
= {1, 4,9, 17}

Figura: Multistage nonsymmetric scenario tree
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Scenario tree notation

E , set of the stages along the horizon. Note: E = |E|.

Ω, set of scenarios.

G, set of nodes in the tree.

Ωg ⊆ Ω, set of scenarios in a group with a 1-1 correspondence to
node g, for g ∈ G.

Ge ⊂ G, set of nodes for stage e, for e ∈ E .

e(g), stage to which node g belongs to, for g ∈ G.

wω, weight or probability assigned to scenario ω ∈ Ω.

wg, weight or probability assigned to node g ∈ G. It is
computed as wg =

∑

ω∈Ω wω

F , set of functions / criteria to be satisfied, such that function
indexed by f = 1 is the objective fun to maximize.
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Scenario tree notation (c.)

Ãg, set of ancestor nodes to node g (including itself), for g ∈ G.

Ag ⊆ Ãg, set of ancestor nodes to node g in the scenario tree
(including itself) with nonzero elements in constraints of
node g, for g ∈ G.

β(g), immediate ancestor node in the scenario tree of node g,
for g ∈ G. Let us assume that β(1) is empty.

Sg, set of successor nodes in the scenario tree to node g
(excluding itself) (i.e., nodes in the subtree whose root is
node g), for g ∈ G,

Note: Set of scenarios Ωg of any leaf node g (i.e., last
node) is singleton. Let us assume that ω = g for ω ∈ Ωg

and g ∈ GE .

S
g
1 ⊆ Sg, set of immediate successors of node g, for

g ∈ G : e(g) < T .
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Scenario tree notation (c.)

T , set of periods (usually, years) in the time horizon. Last
period T = |T |.

T e, set of (consecutive) periods in stage e, for
e ∈ E , T e ∩ T e′

= ∅, e,e′ ∈ E : e 6= e′, T = ∪e∈ET
e.

t(e), first period in set T e, for e ∈ E .

Let (t ,g) denote the pair of indexes for period t and node g, for
t ∈ T e(g),g ∈ G.
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A gigantic stochastic problem

A stage in time horizon: Consecutive years whose
constraint systems must be satisfied in an individual basis.

A multistage stochastic [non-symmetric] scenario tree.
E.g., Brazilian power system: 120 periods, 20119 scenarios
(Sagastizabal MP’12).
So, it is required a combination of:

Sample scenario schemes
SMINO → Sequential SMILO
inexact node (i.e., scenario group) decomposition algos
High Performance Computing
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4 5 6 7 8 9

1

2

4 5 6 7 8 93

10 11 12 13 14 154

10 11 12 13 14 155

10 11 12 13 14 156

10 11 12 13 14 157

16 17 18 19 20 218

16 17 18 19 20 219

16 17 18 19 20 2110

16 17 18 19 20 2111

16 17 18 19 20 2112

16 17 18 19 20 2113

16 17 18 19 20 2114

16 17 18 19 20 2115

Example of four-stage scenario tree (15 nodes, 8 scenarios)

Figura: Vespucci CMS’11
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Risk Neutral (RN). Parameters

ag
1 , bt,g

1 , vectors of objective function coeffs for variables in
vectors xg , y t,g , res.

ht,g , rhs for set of constraints related to node g in period t ,
for t ∈ T e(g), g ∈ G.

Ag′

t,g, Bt ′,g′

t,g , matrices related to ancestor node g′ and
ancestor pair (t ′,g′) in constraints related to pair (t ,g),
res., for t ′ ∈ T e(g′) : t ′ ≤ t ,g′ ∈ Ag, t ∈ T e(g),g ∈ G.

Notice that t ′ < t for g′ 6= g.
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GEP. Risk Neutral (RN). Vector of variables xg in node
g ∈ G of the scenario tree

A vector of 0-1 variables for defining the power generation
capacity expansion, such that the value 1 for each element
means that its construction starts in the (first period of) stage
e(g) for node g and otherwise, 0. A related element can be:

generation plant, wind farm, solar farm, photovoltaic farm
of a given candidate technology,

hydro turbine
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GEP. Risk Neutral (RN). Vector of variables y t ,g in
period t ∈ T e(g) of node g ∈ G of the scenario tree

A vector of continuous variables, such that each element
represents for period t in node g one of the following elements:

Energy generated by the power plants / farms,

water stored in the reservoirs, water released through the
canals in the hyper-hydro valleys,

Green Certificates sold or bought by the generators, CO2

that is emitted,

storage, supplying and consumption of the raw materials
(gas, etc.), etc.
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GEP. RN multistage mixed 0-1 DEM.
Compact representation

Risk neutral model that synthesizes model (5)-(21) (see below):

zRN = máx
∑

g∈G

wg(ag
1xg +

∑

t∈T e(g)

bt,g
1 y t,g)

(2)

subject to
∑

g′∈Ag

∑

t ′∈T e(g′):t ′≤t

(Ag′

t,gxg′

+ Bt ′,g′

t,g y t ′,g′

) = ht,g ∀t ∈ T e(g), g ∈ G

xg ∈ {0,1}nx(g), y t,g ∈ R
ny(t,g) ∀t ∈ T e(g), g ∈ G

Note: The constraint qualification t ′ ≤ t is only active for g′ = g.
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GEP. Types of constraints

For the periods along the time horizon over the scenarios,
satisfying automatically the NAC (since the above
representation of the model is a compact one) lower / upper
bounds on:

Electricity generated from each available current power
plant / farm and those of the candidate technologies that
being previous started their construction are already
available,
Raw material availability for the thermal plants,
Replicated network definition of the reservoirs for the
hyper-hydro valleys,
Electricity generated from each available current and
potential new turbines, if they are available,
Periodic repayment of investment cost allocation of new
power plants / farms,
Green Certificates and CO2 emission definition and
bounding,
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GEP. Modeling

Approximation: A huge but very well structured multicriteria
multistage stochastic mixed 0-1 linear optimization problem

GenCo wishes to determine its optimal planning for
investment in power generation capacity in a long term
horizon.

Regulatory Authorities aim: Promoting the development of
RES (i.e. by hydro, wind, solar, photovoltaic, fossil fuels
and biomass power plants) for power generation systems
with reduced CO2 emissions and penalization.

.
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GEP. Description

Green Certificate schemes support power generation from
RES, and penalizes generation from conventional power
plants (e.g., CCGT, coal, nuclear power plants).

Every year a prescribed ratio is required between the
electricity generated from RES and the total generated.

In case the actual ratio attained at a given year does not
exceed the prescribed one, the energy generator has to
buy Green Certificates in order to satisfy the related
constraint.

On the contrary, when the actual ratio attained is greater
than the prescribed one, the energy generator can sell
Green Certificates in the market

.
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GEP. Description (c.)

GenCo’s aim: Maximizing expected profit along the time
horizon at NPV subject to feasible constraints for nodes
(i.e., scenario groups) in the scenario tree.

Revenues from sale of electricity depend on the market
price and the amount of electricity sold, which is bounded
above by market competition. The revenues also depend
on the number of operating hours per year of the power
plants / farms in the generation system.

Penalization for emitting CO2 greatly varies among
generation technologies.

Variable and fixed costs also greatly differ among the
generation technologies.

Investment costs on some types of generation
technologies depend on the plant rated power and on the
investment costs per power unit.
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GEP. Description (c.)

Revenues and costs associated to the Green Certificate
scheme depend on the Green Certificate price as well as
on the yearly ratio between generation from RES and total
annual generation.

The evolution of electricity prices in nodes covered by the
energy network along the time horizon is not known at the
time when the investment decisions are to be made.

Therefore, a risk is associated with the expected profit from
power generation capacity and energy transmission
expansion, due to the uncertainty on the main parameters.

Our risk management proposal: A mixture of
time-inconsistent and time-consistent measures, such as
Conditional Value-at-Risk (TCVaR / ECVaR) or stochastic
dominance (TSD/ESD) measures.

.
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GEP. Description (c.)

The proposed model determines the evolution of the power
generation mix and location along the time horizon. So, it
determines for every power generation technology
technology:

site location of each power plant / farm
year to start the construction

depending on the node in the scenario tree (i.e.,
scenario group) along the time horizon.

It could be possible that at the year when the new power
plant is ready for being in operation, the realization of
uncertain prices and electricity demand and other key
uncertain elements be drastically changed along the
scenario tree from the node in the tree where the
construction have started.
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GEP. SMILP approximating model due to its SMINLP
complexity and long time horizon

Linear functions approximate nonlinearities on:
Investment and operation costs for generation and
transmission
Hydropower generation
Windpower solarpower generation,
Generation losses, etc.

Unit commitment (scheduling problem) has been over
simplified in the model.
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GEP. Problem modeling. Power generation sets

N T , Candidate technologies for thermal power
generation.

NR, Candidate technologies for power generation from
RES (without considering power generation from
hyper hydro valleys since they have a different
treatment).

N , Candidate technologies (i.e., N = N T ∪ NR).

Laureano F. Escudero Universidad Rey Juan Carlos, Móstoles (Madrid), Spain laureano.escudero@urjc.es Math Methods and SoftwareGEP-NEP-TSD-ESD-SDP-HPC



GEP. Problem modeling. Power generation sets (c.)

InT
, Set of potential thermal power plants of

technology n, for n ∈ N T that can be constructed.

INT
= ∪n∈N TInT

, Set of potential thermal power plants.

InR
, Set of potential power RES plants / farms of

technology n, for n ∈ NR that can be constructed.

INR
= ∪n∈NRInR

, Set of potential RES power plants / farms
(without considering hyper hydro valleys).

IN = INT
∪ INR

, Set potential power plants / farms.

Note: Each new plant / farm will be sited in a given
already chosen location (i.e., node in the energy
netowrk), if it is selected.

n(i), Technology type of potential power plant i ∈ IN .
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GEP. Problem modeling. Power generation sets (c.)

IK T
, Current thermal power plants.

IK R
, Current RES power plants / farms.

IK = IK T
∪ IK R

, Current power plants / farms (i.e., at period 0
of the time horizon)..

Note: It is assumed that the sites are unique for the currently
owned and potential new plants / farms, so, IN ∩ IK = ∅.
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GEP. Problem modeling
Raw material sets for thermal plants

J , Key raw materials (fuel, gas, etc.) required by
thermal power plants (current ones and plants
from new technologies).

Ji ⊆ J , Raw materials required by any plant of candidate
power thermal technology i ∈ N K or current power
thermal plant i ∈ IK .
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GEP. Problem modeling
Hyper hydropower generation sets

V, Hyper hydropower valleys (i.e., valleys with hyper
period water stored).

Iv , Reservoirs in hydropower valley v ∈ V.

Ui ⊂ Iv , (Immediate) Upstream reservoirs to reservoir
i ∈ Iv , v ∈ V.

Di ⊂ Iv , (Immediate) Downstream reservoirs to reservoir
i ∈ Iv , v ∈ V.

D̃i ⊂ Di , Reservoirs {j}, such that ’canal’ ij has a potential
increase of power generation from the current one
(that even can be zero), for i ∈ Iv , v ∈ V.

IV = ∪v∈VI
v , Reservoirs in the hydropower valleys.
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GEP. Problem modeling. Deterministic parameters
Number of time periods

Sn [t ], Construction time periods required for any
power plant / farm of candidate technology n ∈ N
to be available for power generation.

Li [t], Industrial life of any current power plant / farm
i ∈ IK .

Sij [t], Construction periods required for hydro power
generation turbine(s) in ’canal’ ij , for j ∈ D̃i , i ∈ IV .
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GEP. Problem modeling. Deterministic parameters (c.)

ρ [−], Discount rate.

Mi , Ri [MEURO], Investment cost and its periodic
allocation (see below), res., required by candidate
power plant / farm i , for i ∈ IN .

Mij , Rij [MEURO], Investment cost and its periodic
allocation (see below), res., required by hydro
power generation turbine(s) in ’canal’ ij , for
j ∈ D̃i , i ∈ IV .

Laureano F. Escudero Universidad Rey Juan Carlos, Móstoles (Madrid), Spain laureano.escudero@urjc.es Math Methods and SoftwareGEP-NEP-TSD-ESD-SDP-HPC



GEP. Problem modeling. Deterministic parameters (c.)

I
n
[−], Maximum number of plants / farms of
candidate technology n ∈ N that can be
constructed along the time horizon.

Pi [MW ], Rated power of any plant / farm of
candidate technology i ∈ N or current power plant
/ farm i ∈ IK .

Pij [MW ], Rated power of the set of turbines in ’canal’
ij of hydro reservoir i , for j ∈ Di , i ∈ IV .

P i ,t [GWh], Minimum generated energy imposed for
any plant / farm of candidate technology i ∈ N or
current power plant / farm i ∈ IK at period t ∈ T .
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GEP. Problem modeling. Deterministic parameters (c.)

νi [−], Percentage of loss of any power plant / farm
of candidate technology i ∈ N or current power
plant / farm i ∈ IK .

ζi [TM/GWh], CO2 emission rate of current power
plant i ∈ IK T

.

ϕij [MWh/TM], Assumed constant converting one TM
of raw material j ∈ Ji into energy generated by the
current thermal plant i , for i ∈ KT .

σijc [−] and [λijc] [oh], Loss rate and Reactance of
cable c ∈ Cij of current transmission line ij ∈ LK in
the energy network, res.
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GEP. Problem modeling. Deterministic parameters (c.)

R
K
ij [h3], Water capacity for hydro power generation in

current turbine(s) in ’canal’ ij , for j ∈ Di , i ∈ IV .

φK
ij [MWh/h3], Assumed constant converting one h3

of water into energy generated by the current
(identical turbine(s)) in ’canal’ ij , for j ∈ Di , i ∈ IV .
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GEP. Problem modeling. Uncertain parameters for any
period from set T e(g) in node g ∈ G of the scenario tree

Hi ,g [h], Operating hours of any power plant / farm of
candidate technology i ∈ N or current power plant
i ∈ IK .

P i ,g [GWh], Maximum electricity to generate by any
power plant / farm of candidate technology i ∈ N
or current power plant / farm i ∈ IK . See below.

ϕnj ,g [MWh/TM], Assumed constant converting one TM
of raw material j ∈ Ji into electricity generated by
any thermal power plant of candidate technology
n ∈ N T .

(N j ,g) [TM], Upper bound on the supply of raw material
j ∈ J for the thermal power plants owned by the
GenCo.
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GEP. Problem modeling. Uncertain parameters for
clean energy looking in any period from set T e(g) of
node g ∈ G of the scenario tree

Qg [GMh], (negative) Lower bound on the Green
Certificates. Notice that if they are negative the
GenCo will pay for them; otherwise, they can be
sold n the market.

γg [−], Ratio to be attained of electricity generated
from RES plants plus GC and total electricity
generated by the GenCo.

µg [TM/GWh], Upper bound on the CO2 that can be
allowed by one GWh of electricity to be generated
by the total set of owned and available new
thermal plants of the GenCo.

ζn,g [TM/GWh], CO2 emission rate of any thermal
power plant of candidate technology n ∈ N T .
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GEP. Problem modeling. Uncertain parameters in
reservoir i ∈ IV in the hyper hydro valleys for any
period from set T e(g) in node g ∈ G of the scenario tree

Wi ,g [h3/t], Water exogenous inflow into reservoir i .
Note: Its value is zero for run-of-the river plants.

R
N
ij ,g [h3/h], Water capacity for hydro power generation

in candidate turbine(s) in ’canal’ ij , for j ∈ D̃i .

φN
ij ,g [MWh/h3], Assumed con’stant converting one h3

into electricity to be generated by the candidate
turbine(s) for hydro power generation in ’canal’ ij ,
for j ∈ D̃i .

W i ,g, W i ,g [h3], Lower and upper bounds of stored water at
the end of any period in reservoir i .

Rij ,g, Rij ,g [h3/t], Lower and upper bounds of the release
water in ’canal’ ij , for j ∈ Di .
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GEP. Problem modeling. Uncertain market electricity
price and demand to the whole generation system
IK ∪ IV ∪ IN in period t ∈ T e(g) in node g ∈ G of the
scenario tree

Dt,g [GWh], demand.

πD
t,g [kEURO/GWh], price.
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GEP. Problem modeling. Uncertain cost parameters
for any period in node g ∈ G

πGC
g [kEURO/GWh], Green Certificate price.

πCO2
g [kEURO/TM], CO2 emission penalization.

For any thermal power plant of candidate technology n ∈ N K

(no hydro plants):

cF
n,g [kEURO], Fixed power generation cost.

cV
n,g [kEURO/GWh], Variable power generation cost.

For any current thermal power plant i ∈ IK (no hydro plants):

cF
i ,g [kEURO], Fixed power generation cost.

cV
i ,g [kEURO/GWh], Variable power generation cost.

Fixed cost for:

cij ,g [kEURO], New or current hydro turbine(s) in
’canal’ ij , for j ∈ Di , i ∈ IV .
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GEP problem modeling. Uncertain economic
parameters for whole set of periods in T e(g) for node
g ∈ G of the scenario tree

Bg [MEURO], Upper bound on the total investment
cost amortization that is allocated, due to the
availability of the total new power plants / farms
and hydro power generation turbines.
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GEP. Problem modeling. 0-1 x-variables for power
generation capacity expansion in the electricity
network at (first) period t(e(g)) of stage e(g) ∈ E in
node g ∈ G of the scenario tree

The value 1 for a 0-1 variable means that the entity starts its
construction by that period and otherwise, 0.

xi ,g [−], for potential new power plant / farm i ∈ IN , for
g ∈ G : t(e(g)) = 1, · · · ,T − Sn(i).

xij ,g [−], for potential new turbine(s) in ’canal’ ij for
j ∈ D̃i , i ∈ IV , for g ∈ G : t(e(g)) = 1, · · · ,T − Sij .

Observe that, without loss of generality, it is assumed that the
starting construction period of any plant / farm can only be
performed at the first period of any stage along the time
horizon.
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GEP. Problem modeling. Continuous variables for time
period t ∈ T e(g) of stage e(g) ∈ E in node g ∈ G of the
scenario tree

pi ,t,g [GWh], Electricity generated by power plant / farm
i ∈ IN ∪ IK .

wi ,t,g [h3], Water stored in reservoir i ∈ IV at the
beginning of the period.

rij ,t,g [h3], Water released through ’canal’ ij at the
period, for j ∈ Di , i ∈ IV

qt,g [GWh], Green Certificates sold (qt,g > 0) or
bought (qt,g < 0) by the GenCo.

ot,g [TM], CO2 generated in period t (and, then, to be
paid for) by the GenCo.
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GEP. Problem modeling. Continuous variables for time
period t ∈ T e(g) of stage e(g) ∈ E in node g ∈ G of the
scenario tree (c)

For raw material j ∈ J :

ej ,t,g [TM], Storage of the raw material at the beginning
of the period.

nj ,t,g [TM], Supplying of the raw material at the period.

mij ,t,g [TM], Consumption of raw material for the energy

generated by thermal power plant i ∈ IK T
∪ INT

.

For electricity demand served by the whole generation system
IK ∪ IV ∪ IN :

st,g [GWh].
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GEP. Problem modeling. Risk Neutral objective
function

Maximizing the NPV of the expected profit minus the fixed
generation cost of current hydro power turbines of reservoirs,
current thermal power plants / farms:

z = máx
∑

ω∈Ω

wωzω

−
∑

g∈G

wg 1

(1 + ρ)t(e(g))
(
∑

i∈IV

∑

j∈Di\D̃i

cij ,g +
∑

i∈IK :i≤Li

cF
i ,g),

(3)
where zω gives the NPV of profit (4) under scenario ω ∈ Ω,
such that max z (3) is subject to constraints (5)-(21).
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GEP. Problem modeling.
Risk Neutral objective function

Elements of NPV of profit zω under scenario ω ∈ Ω:

Revenue from sale of electricity.

Revenue from sale (or, alternatively, cost from purchase) of
Green Certificates.

Penalization of CO2 emission.

Variable generation cost of thermal power plants.

Variable generation cost of RES power plants, without
including hydro generation plants.

Periodic debt repayment of all the new power plants / farms
and new hydro power turbines.

Fixed power generation cost of available new plants / farms
and new hydro power turbines.
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zω function

zω =
∑

g∈Aω

∑

t∈T e(g)

1

(1 + ρ)t

[

πD
t,gst,g + πGC

g qt,g − πCO2
g ot,g

−
∑

i∈IN

cV
n(i),gpi ,t,g −

∑

i∈IK

cV
i ,gpi ,t,g

]

−
∑

g∈Aω

1

(1 + ρ)t(e(g))

[

∑

i∈IN

(Ri + cF
n(i),g)xi ,g′

+
∑

i∈IV

∑

j∈D̃i

(Rij + cij ,g)xij ,g′′

]

(4)

where g′ ∈ Ag : t(e(g′)) = t(e(g))− Sn(i) (res.,
g′′ ∈ Ag : t(e(g′′)) = t(e(g))− Sij ) is the ancestor node in the
scenario tree to node g, its value 1 of variable xi ,g′ (res., xij ,g′′)
defines that the related entity has started its construction by
period t(e(g)) and, then, the entity is available for production.
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GEP. Defining the 0-1 character of the x-step variables
for the plants / farms of candidate technology n ∈ N
that can started its construction by the (first) period
t(e) of stage e(g) ∈ E in node g ∈ G of scenario tree

For all i ∈ IN , g ∈ G : t(e(g)) = 1, · · · ,T − Sn(i):

xi ,g ∈ {0,1}

xi ,β(g) ≤ xi ,g

(5)
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GEP. Forcing the upper bounding of the number of the
plants / farms of candidate technology n ∈ N whose
construction can be started at (first) period t(e) of
stage e(g) ∈ E in node g ∈ G of the scenario tree

∑

i∈In

∑

g∈G:t(e(g))=1,··· ,T−Sn(i)

(xi ,g − xi ,β(g)) ≤ I
n

(6)
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GEP. Electricity generation lower and upper bounding
for current power plant / farm i at period t ∈ T e(g) in
node g ∈ G of the scenario tree

P i ,t ≤ pi ,t,g ≤ P i ,g ∀i ∈ IK , (7)

where

P i ,g =







1
1000PiHi ,g(1 − νi) if t ≤ Li

0 if t > Li

(8)

Parameter Hi ,g takes into account possible plant / farm
breakdown and maintenance.
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GEP. Electricity generation lower and upper bounding
for power plant / farm i of candidate technology n at
period t ∈ T e(g) in node g ∈ G of the scenario tree (c.)

The electricity generation is lower bounded by the conditional
minimum P i ,t .

P i ,txi ,g′ ≤ pi ,t,g ≤ Pn(i),gxi ,g′ ∀i ∈ IN , (9)

where g′ ∈ Ag : t(e(g′)) = t(e(g))− Sn(i).
The maximum electricity generation Pn,g of a power plant / farm
of technology n ∈ N is defined as

Pn,g =
1

1000
PnHn,g(1 − νn) (10)

Note: Parameter Hn,g takes into account possible plant / farm
breakdown and maintenance.
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GEP. Defining the bounding of thermal power
generation, due to raw material availability at period
t ∈ T e(g) in node g ∈ G of the scenario tree

pi ,t,g = 1
1000ϕijmij ,t,g ∀j ∈ Ji , i ∈ IK T

pi ,t,g = 1
1000ϕn(i)j ,gmij ,t,g ∀j ∈ Ji , i ∈ INT

(11)

ej ,t,g + nj ,t,g −
∑

i∈IKT ∪INT

mij ,t,g = ej ,t+1,ĝ ∀j ∈ J ,

where ĝ = g for t + 1 ∈ T e(g) and otherwise, ĝ = g′ for all
g′ ∈ Ge′

being e′ = e(g) + 1 (notice that t + 1 = t(e′)).

nj ,t,g ≤ N j ,g ∀j ∈ J (12)
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GEP. Defining the 0-1 character of the x-variables for
the new power turbine ij for j ∈ D̃i , i ∈ IV that can
start its construction at (first) period t(e(g)) of stage
e(g) ∈ E in node g ∈ G of the scenario tree

For all ij for j ∈ D̃i , i ∈ IV , g ∈ G : t(e(g)) = 1, · · · ,T − Sij :

xij ,g ∈ {0,1}

xij ,β(g) ≤ xij ,g

(13)
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GEP. Defining the replicated network of the reservoirs
i ∈ IV in the hydro valleys along the periods {t} of the
time horizon for period t ∈ T e(g) in node g ∈ G of the
scenario tree

wi ,t,g +
∑

j∈Ui

Wi ,g =
∑

j∈Di

rij ,t,g + wi ,t+1,ĝ, (14)

where ĝ = g for t + 1 ∈ T e(g) and otherwise, ĝ = g′ for all
g′ ∈ Ge′

being e′ = e(g) + 1 (notice that t + 1 = t(e′)).

W i ,g ≤ wi ,t,g ≤ W i ,g

Rij ,g ≤ rij ,t,g ≤ Rij ,g ∀j ∈ Di

(15)
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GEP. Electricity generation from current and potential
new turbines in the reservoirs i ∈ IV of the hydro
valleys for period t ∈ T e(g) in node g ∈ G of the
scenario tree

pi ,t,g =
∑

j∈Di\D̃i

1
1000

(φK
ij mı́n{rij ,t,g, R

K
ij })(1 − xij ,g′′) +

∑

j∈D̃i

1
1000

(φN
ij ,g mı́n{rij ,t,g, R

N
ij ,g})xij ,g′′ (16)

where g′′ ∈ Ag : t(e(g′′)) = t(e(g))− Sij is the ancestor node in
the scenario tree to node g, such the value 1 of variable xij ,g′′

defines that the new turbines in the reservoirs i ∈ IV have
started its construction by period t(e(g)) and, then, the entity is
available for production.
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GEP. Electricity served demand by the whole
generation system IK ∪ IV ∪ IN in period t ∈ T e(g) in
node g ∈ G of the scenario tree

∑

i∈IK∪IV∪IN

pi ,t,g = st,g

0 ≤ st,g ≤ Dt,g

(17)
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GEP. Periodic investment cost allocation of new power
plants / farms for the set of periods T e(g) in node g ∈ G
of the scenario tree

1

(1 + ρ)t(e(g))
(
∑

i∈IN

Rixi ,g′ +
∑

i∈IV

∑

j∈D̃i

Rijxij ,g′′) ≤ Bg, (18)

where g′ ∈ Ag : t(e(g′)) = t(e(g))− Sn(i) (res.,
g′′ ∈ Ag : t(e(g′′)) = t(e(g))− Sij ) is the ancestor node in the
scenario tree to node g, such the value 1 of variable xi ,g′ (res.,
xij ,g′′) defines that the related entity has started its construction
by period t(e(g)) and, then, the entity is available for
production.
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GEP. Periodic investment cost allocation of new power
plants / farms for the set of periods T e(g) in node g ∈ G
of the scenario tree (c.)

Remember that Ri (res. Rij ) are the debt repayment per period
for investment in power plant / farm i of candidate technology
n(i) (res. new turbine(s) for ’canal’ ij of hydro power
generation), such that

Ri =
1000·Mi ·Pn(i)·ρ

1−( 1
1+ρ

)
Ln(i)

i ∈ IN

Rij =
1000·Mij ·Pij ·ρ

1−( 1
1+ρ

)
Lij

j ∈ D̃i , i ∈ IV

(19)
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GEP. Green Certificates definition and bounding for
period t ∈ T e(g) in node g ∈ G of the scenario tree

The amount of electricity qt,g for which, at period t in the node g
of the scenario tree, the corresponding Green Certificates are
bought if qt,g < 0, or sold if qt,g > 0 is defined as follows,

qt,g =
∑

i∈IV∪INR∪IKR

pi ,t,g − γt

∑

i∈I

pi ,t,g

Qg ≤ qt,g

(20)
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GEP. CO2 emission definition and bounding for period
t ∈ T e(g) in node g ∈ G of the scenario tree

The amount ot,g of CO2 that can be emitted (and, then, paid
for) is defined as follows,

ot,g =
∑

i∈IKT

ζipi ,t,g +
∑

i∈INT

ζn(i),gpi ,t,g

0 ≤ ot,g ≤ µg

∑

i∈INT ∪IKT

pi ,t,g

(21)
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GEP. Warning. Linking variables from ancestor nodes
g′ ∈ Ag into constraints in node g ∈ G of the scenario
tree

Continuous (water stored) variable wi ,t+1,ĝ and continuous
(raw material stored) variable ej ,t+1,ĝ through scheme

ĝ = g for t +1 ∈ T e(g) and otherwise, ĝ = g′ for all g′ ∈ Ge′

being e′ = e(g) + 1.
0-1 variables for defining the generation capacity
expansion:
xi,g [−], for potential new power plant / farm i ∈ IN , for

g ∈ G : t(e(g)) = 1, · · · ,T − Sn(i).
xij,g [−], for potential new turbine(s) in ’canal’ ij for

j ∈ D̃i , i ∈ IV , for g ∈ G : t(e(g)) = 1, · · · ,T − Sij .
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NEP. European policy crossing borders: Examples

Wind energy could be generated from the North Sea and
South of Spain,

Solar energy can be generated from South Spain and
South Portugal,

Biomass could be generated from neighbors to the
European region. And

all together can be used for satisfying electricity at multiple
European points far away from the physical sources.
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NEP.
Main uncertain parameters in the electricity system

Electricity demand from the network nodes.

Electricity offer from the power generation nodes.

Electricity loss of new transmission technologies.

Characteristics (i.e., maximum energy flow and reactance)
of cable types on new energy transmission lines.

Fixed and variables costs of energy transmission
technologies.
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NEP. Multicriteria

Cost of new transmission lines-

Transmission Network reliability and resilence.

EC directives on environmental issues and others.

EU governments, etc.
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NEP. Some European projects affecting
Transmission systems

ENTSO-e, European Network of Transmission System
Operators for Electricity. Ten Year Network Development Plan
2010-2020. Those investments are very capital intensive (e.g.,
ENTSO-e members joint budget EURO 104 bn, 2012-2022) and
long useful life (up to 40 years). See www.entsoe.eu.

Desertec, project of a German consortium for installing RES
power plants (over 20 GW, photovoltaic, solar power, wind, ...) in
Sahara desert to be connected to European transmission
system. See www.Desertec.org/fileadmin/downloads/desertec

OWF: 5.3 GW installed in Europe (including London array, 1
GW). See EWEA. Wind in power. report 2012.

See Achim Woyte and 3E OffshoreGrid. An Intelligent Energy
Europe Project, 2009.

London Array. See www.londonarray.com.

NSCOGI. See www.The North Sea Countries’ Offshore Grid
Initiative.
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Risk Neutral (RN). Parameters

ag
1 , bt,g

1 , vectors of objective function coeffs for variables in
vectors xg , y t,g , res.

ht,g , rhs for set of constraints related to node g in period t ,
for t ∈ T e(g), g ∈ G.

Ag′

t,g, Bt ′,g′

t,g , matrices related to ancestor node g′ and
ancestor pair (t ′,g′) in constraints related to pair (t ,g),
res., for t ′ ∈ T e(g′) : t ′ ≤ t ,g′ ∈ Ag, t ∈ T e(g),g ∈ G.

Notice that t ′ < t for g′ 6= g.
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NEP. Risk Neutral (RN).
Vector of variables xg in scenario tree node g ∈ G

A vector of 0-1 variables for defining the new electricity
transmission lines, such that the value 1 for each element
means that its construction starts in the (first period of) stage
e(g) for node g and otherwise, 0. A related element can be:

a cable type of a given new transmission line
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NEP. Risk Neutral (RN). Vector of variables y t ,g in
period t ∈ T e(g) of scenario tree node g ∈ G

A vector of continuous variables, such that each element
represents for period t in node g one of the following elements:

electricity generated from power plants / farms,

voltage angle at the energy transmission nodes,

electricity energy flow through the transmission cables,

served electricity demand from each node in the network,
etc.
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NEP. RN multistage mixed 0-1 DEM.
Compact representation

Risk neutral model that synthesizes model (25)-(32) (see
below):

zRN = máx
∑

g∈G

wg(ag
1xg +

∑

t∈T e(g)

bt,g
1 y t,g)

(22)

subject to
∑

g′∈Ag

∑

t ′∈T e(g′):t ′≤t

(Ag′

t,gxg′

+ Bt ′,g′

t,g y t ′,g′

) = ht,g ∀t ∈ T e(g), g ∈ G

xg ∈ {0,1}nx(g), y t,g ∈ R
ny(t,g) ∀t ∈ T e(g), g ∈ G

Note: The constraint qualification t ′ ≤ t is only active for g′ = g.
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NEP. Constraints

For the periods along the time horizon over the scenarios,
satisfying automatically the NAC (since the above
representation of the model is a compact one): lower / upper
bounds on:

First Kirchhoff law balancing power in the nodes of current
transmission lines and Second Kirchhoff law (voltage law)
defining energy flow in the transmission network.

First and Second Kirchhoff laws for the candidate
technologies that are available once their construction is
over.

Periodic repayment of investment cost allocation of the
cables of the new transmission lines, etc.
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NEP. Modeling

Approximation: A huge but very well structured multicriteria
multistage stochastic mixed 0-1 linear optimization problem

Key energy stakeholders (transmission system operators
(TSO)) want to determine their optimal planning for
investment in electricity transmission in a long term horizon
and, on the other hand, environmental entities want to get
their goals.

.
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NEP. Problem description

TSO’s aim: Minimizing expected cost along the time
horizon at NPV subject to feasible constraints for nodes
(i.e., scenario groups) in the scenario tree.

Variable and fixed costs also greatly differ among the line
transmission technologies.

Investment costs on cables for energy transmission lines
depend on transmission types.

Uncertainty on electricity offer and demand as well as on
the transmission line disruption along the time horizon.
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NEP. Problem description (c.)

A risk is associated with the expected cost of the electricity
transmission network expansion, due to the uncertainty on
the main parameters.

Our risk management proposal: A mixture of
time-inconsistent and time-consistent measures, such as
Conditional Value-at-Risk (TCVaR / ECVaR) or stochastic
dominance (TSD/ESD) measures.

.
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NEP. Problem description (c.)

The proposed model determines the evolution of the
electricity transmission network along the time horizon. So,
it determines for every transmission line technology:

site location of transmission line
year to start the construction

depending on the node in the scenario tree (i.e.,
scenario group) along the time horizon.

It could be possible that at the year when the new
transmission line is ready for being in operation, the
realization of uncertain electricity offer and demand
and other key uncertain elements be drastically
changed along the scenario tree from the node in tree
where the construction have started.
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NEP. SMILP approximating model due to its SMINLP
complexity and long time horizon

Linear functions approximate nonlinearities on electricity
flow and flow losses, etc.

Some peculiarities of the transmission system are relaxed.
They are related to substations, cables, transformers and
converters types and their features, peculiarities of
Off-shore Wind Farms, sets of AC and DC cables,
correspondence between transformer or converter types
and their respective voltage levels, etc.
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NEP. Problem modeling. Network sets

IG, Power generation nodes.

IT , Pure energy transmission nodes (i.e., they are not
power generation plants / farms).

I, Nodes in the transmission (connected) network,
such that I = IG ∪ IT . Note: It is assumed that
any node in the transmission network can have
electricity demand (i.e., it could be zero).

LN , Candidate (new) transmission lines to be installed
in the network.

LK , Current lines in the transmission network.

L, Transmission lines in the network (i.e.,
L = LK ∪ LN).

Cij , Cables in transmission line ij ∈ L.
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NEP. Problem modeling. Deterministic parameters
Number of time periods

In the electricity network:

Sijc [t], Construction time periods required for cable
c ∈ Cij of new transmission line ij , for ij ∈ LN .

Lijc [t], Industrial life of cable c ∈ Cij of current
transmission line ij , for ij ∈ LK .
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NEP. Problem modeling. Deterministic parameters (c.)

ρ [−], Discount rate.

Mijc, Rijc [MEURO], Investment cost and its periodic
allocation (see below), res., required by cable
c ∈ Cij of new line ij ∈ LN in the transmission
network.

Laureano F. Escudero Universidad Rey Juan Carlos, Móstoles (Madrid), Spain laureano.escudero@urjc.es Math Methods and SoftwareGEP-NEP-TSD-ESD-SDP-HPC



NEP. Problem modeling.
Uncertain parameters for period t in T e(g) in scenario
tree node g ∈ G

Pi ,t,g, , electricity to generate in generation node i ∈ IG.

Di ,t,g [GWh], electricity demand in network node i ∈ I.
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NEP problem modeling.
Uncertain parameters for any period from set T e(g) in
scenario tree node g ∈ G

For each network node i ∈ I:

V i ,g [rad ], Maximum voltage angle allowed.

For each cable c ∈ Cij of new transmission line ij , so, ij ∈ LN ;

F ijc.g [GWh], Maximum flow allowed.

λijc,g [oh], Reactance.

σijc,g [−], Loss rate.
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NEP. Problem modeling.
Uncertain fixed cost parameters for any period from
set T e(g) in scenario tree node g ∈ G

cijc,g [kEURO], cable c ∈ Cij of new transmission line
ij ∈ LN in the electricity network.
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NEP. Problem modeling.
Uncertain economic parameters for whole set of
periods in T e(g) in scenario tree node g ∈ G

Bg [MEURO], Upper bound on the total investment
cost amortization that is allocated, due to the
availability of the new transmission lines.
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NEP. Problem modeling.
0-1 x-variables for new transmission lines in the
electricity network at (first) period t(e(g)) of stage
e(g) ∈ E in scenario tree node g ∈ G

xijc,g [−], its value 1 means that the construction of the cable
c ∈ Cij of new transmission line ij ∈ LN starts by that period
and otherwise, 0, for g ∈ G : t(e(g)) = 1, · · · ,T − Sijc.

Observe that, without loss of generality, it is assumed that the
starting construction period can only be performed at the first
period of any stage along the time horizon.
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NEP. Problem modeling.
Decision continuous variables for time period t ∈ T e(g)

of stage e(g) ∈ E in scenario tree node g ∈ G

For the electricity network:

vi ,t,g [rad ], Voltage angle at node i ∈ I.

fijc,t,g [GWh], Energy flow through cable c ∈ Cij of line
(ij) ∈ L.

si ,t,g [GWh], Served electricity demand from node i ∈ I.
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NEP. Problem modeling.
Risk Neutral objective function

Minimizing the NPV of the expected cost of the new
transmission lines plus the fixed cost of the cables of the
current transmission lines:

z = mı́n
∑

ω∈Ω

wωzω

+
∑

ij∈LK

∑

c∈Cij

cijc

∑

g∈G

wg 1

(1 + ρ)t(e(g))
,

(23)

where zω gives the NPV of cost (24) under scenario ω ∈ Ω,
such that min z (23) is subject to constraints (25)-(32), and
t ≡ t(e(g)).
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NEP. Problem modeling.
Risk Neutral objective function (c.)

Elements of NPV of new lines transmission cost zω under
scenario ω ∈ Ω:

Periodic debt repayment of all new transmission lines

Fixed transmission cost of available new transmission
lines.
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zω function

zω =
∑

g∈Aω

1

(1 + ρ)t(e(g))

∑

ij∈LN

∑

c∈Cij

(Rijc + cijc,g)xijc,g′ (24)

where g′ ∈ Ag : t(e(g′)) = t(e(g))− Sijc is the ancestor node in
the scenario tree to node g, such the value 1 of variable xijc,g′

defines that the cable c ∈ Cij of new transmission line ij ∈ LN

has started its construction by period t(e(g)) and, then, it is
available for production.
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NEP.
Defining the 0-1 character of the x-step variables for
the cable c ∈ Cij of new transmission line ij ∈ LN that
can started its construction by the (first) period t(e) of
stage e(g) ∈ E in scenario tree node g ∈ G

For all i ∈ IN , g ∈ G : t(e(g)) = 1, · · · ,T − Sijc:

xijc,g ∈ {0,1}

xijc,β(g) ≤ xijc,g

(25)
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NEP.
First Kirchhoff law balancing power in the nodes of
current transmission lines for period t ∈ T e(g) in
scenario tree node g ∈ G

For energy generation nodes i ∈ IK ∪ IN ∪ IV :
∑

j :(j ,i)∈L

∑

c∈C ji

σjic,gfjic,t,g+Pi ,t,g−
∑

j :(i ,j)∈L

∑

c∈Cij

σijc,gfijc,t,g+si ,t,g = Di ,t,g

(26)
For energy transmission nodes i ∈ IT :

∑

j :(j ,i)∈L

σjic,g fjic,t,g −
∑

j :(i ,j)∈L

∑

c∈Cij

σijc,gfijc,t,g + si ,t,g = Di ,t,g (27)

Note: For both types of nodes, σijc,g ≡ σijc for ij ∈ LK .
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NEP.
Second Kirchhoff law (Voltage law) defining energy
flow in the transmission network for period t ∈ T e(g) in
scenario tree node g ∈ G

For current energy transmission network c ∈ Cij , ij ∈ LK :

fijc,t,g =
vi ,t,g − vj ,t,g

λijc
(28)

For expansion energy transmission network c ∈ Cij , ij ∈ LN :

−M(1 − xijc,g′) ≤ fijc,t,g −
vi ,t,g − vj ,t,g

λijc,g
≤ M(1 − xijc,g′), (29)

where g′ ∈ Ag : t(e(g′)) = t(e(g))− Sijc is the ancestor node in
the scenario tree to node g, such the value 1 of variable xijc,g′

defines that the cable c ∈ Cij of the new transmission line
ij ∈ LN has started its construction by period t(e(g)) and, then,
it is available for operation.
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NEP.
Periodic investment cost allocation of cables of new
transmission lines in the electricity network for the set
of periods T e(g) in scenario tree node g ∈ G

1

(1 + ρ)t(e(g))

∑

ij∈(LN)

∑

c∈Cij

Rijcxijc,g′ ≤ Bg (30)

Rijc is the debt repayment per period for investment in cable
c ∈ Cij of transmission line ij , such that

Rijc =
1000 · Mijc · ρ

1 − ( 1
1+ρ)

Lijc
(31)
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NEP.
Variables defining for period t ∈ T e(g) in scenario tree
node g ∈ G

si ,t,g ∈ R
+ ∀i ∈ I

0 ≤ vi ,t,g ≤ V i ,g ∀i ∈ I

−F ijc,g ≤ fijc,t,g ≤ F ijc,g ∀c ∈ Cij , ij ∈ LK

−F ijc.gxijc,g′ ≤ fijc,t,g ≤ F ijc.gxijc,g′ ∀c ∈ Cij , ij ∈ LN ,

(32)

where g′ ∈ Ag : t(e(g′)) = t(e(g))− Sijc is the ancestor node
as above.
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Scenario tree notation

E , set of the stages along the horizon.

Ω, set of scenarios.

G, set of nodes in the tree.

Ωg ⊆ Ω, set of scenarios in a group with a 1-1 correspondence to
node g, for g ∈ G.

Ge ⊂ G, set of nodes for stage e, for t ∈ T .

e(g), stage to which node g belongs to, for g ∈ G.

wω, weight or probability assigned to scenario ω ∈ Ω.

wg, weight or probability assigned to node g ∈ G. It is
computed as wg =

∑

ω∈Ω wω

F , set of functions / criteria to be satisfied, such that function
indexed by f = 1 is the objective fun to maximize.
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Scenario tree notation (c.)

Ãg, set of ancestor nodes to node g (including itself), for g ∈ G.

Ag ⊆ Ãg, set of ancestor nodes to node g in the scenario tree
(including itself) with nonzero elements in constraints of
node g, for g ∈ G.

β(g), immediate ancestor node in the scenario tree of node g,
for g ∈ G. Let us assume that β(1) is empty.

Sg, set of successor nodes in the scenario tree to node g
(excluding itself) (i.e., nodes in the subtree whose root is
node g), for g ∈ G,

Note: Set of scenarios Ωg of any leaf node g (i.e., last
node) is singleton. Let us assume that ω = g for ω ∈ Ωg

and g ∈ G|E|.
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Scenario tree notation (c.)

T , set of periods (usually, years) in the time horizon. Last
period T = |T |.

T e, set of (consecutive) periods in stage e, for
e ∈ E , T e ∩ T e′

= ∅, e,e′ ∈ E : e 6= e′, T = ∪e∈ET
e.

t(e), first period in set T e, for e ∈ E .

Let (t ,g) denote the pair of indexes for period t and node g, for
t ∈ T e(g),g ∈ G.
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1

1 2 3

4 5 6 7 8 9

1

2

4 5 6 7 8 93

10 11 12 13 14 154

10 11 12 13 14 155

10 11 12 13 14 156

10 11 12 13 14 157

16 17 18 19 20 218

16 17 18 19 20 219

16 17 18 19 20 2110

16 17 18 19 20 2111

16 17 18 19 20 2112

16 17 18 19 20 2113

16 17 18 19 20 2114

16 17 18 19 20 2115

Example of four-stage scenario tree (15 nodes, 8 scenarios)

Figura: Vespucci CMS’11
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Risk Neutral (RN). Parameters

ag
1 , bt,g

1 , vectors of objective function coeffs for variables in
vectors xg , y t,g , res.

ht,g , rhs for set of constraints related to node g in period t ,
for t ∈ T e(g), g ∈ G.

Ag′

t,g, Bt ′,g′

t,g , matrices related to ancestor node g′ and
ancestor pair (t ′,g′) in constraints related to pair (t ,g),
res., for t ′ ∈ T e(g′) : t ′ ≤ t ,g′ ∈ Ag, t ∈ T e(g),g ∈ G.

Notice that t ′ < t for g′ 6= g.
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Risk Neutral (RN).
Vector of variables xg in scenario tree node g ∈ G

A vector of 0-1 variables for defining the electricity capacity
expansion, such that the value 1 for each element means that
its construction starts in the (first period of) stage e(g) for node
g and otherwise, 0. A related element can be:

For power generation capacity expansion planning:
generation plant, wind farm, solar farm, photovoltaic farm of
a given candidate technology,
hydro turbine

For new transmission lines planning problem:
cable in a given new transmission line
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Risk Neutral (RN).
Vector of variables y t ,g in period t ∈ T e(g) of scenario
tree node g ∈ G

A vector of continuous variables, such that each element
represents for period t in node g one of the following elements:

For power generation capacity expansion planning:
Electricity generated from each available current power
plant / farm and those of the candidate technologies that
being previously started their construction are already
available,
Raw material availability for the thermal plants,
Replicated network definition of the reservoirs for the
hyper-hydro valleys,
Electricity generated from each available current and
potential new turbines, if they are available,
Periodic repayment of investment cost allocation of new
power plants / farms,
Green Certificates and CO2 emission definition,
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Risk Neutral (RN).
Vector of variables y t ,g in period t ∈ T e(g) of scenario
tree node g ∈ G (c.)

A vector of continuous variables, such that each element
represents for period t in node g one of the following elements
(c.):

For new transmission lines planning problem:
electricity generated by power plants / farms,
voltage angle at the energy transmission nodes,
electricity energy flow through the transmission cables,
served electricity demand from each node in the network,
etc.
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RN multistage mixed 0-1 DEM.
Compact representation

Risk neutral model that synthesizes each model (5)-(21) and
(25)-(32):

zRN = máx
∑

g∈G

wg(ag
1xg +

∑

t∈T e(g)

bt,g
1 y t,g)

(33)

subject to
∑

g′∈Ag

∑

t ′∈T e(g′):t ′≤t

(Ag′

t,gxg′

+ Bt ′,g′

t,g y t ′,g′

) = ht,g ∀t ∈ T e(g), g ∈ G

xg ∈ {0,1}nx(g), y t,g ∈ R
ny(t,g) ∀t ∈ T e(g), g ∈ G

Note: The constraint qualification t ′ ≤ t is only active for g′ = g.
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TSD/ESD risk averse measures.
Motivation

The risk neutral (RN) model maximizes the expected profit
over the scenarios along the time horizon.

However, it ignores the variability of the objective function
value over the scenarios, in particular the “left” tail (for
maximization) of the non-wanted scenarios and,
additionally,

it only considers the principal function / criterion.

There are some risk averse approaches that additionally
deal with risk management; among them, TSD/ESD
reduce the risk of the negative impact of the solutions in
non-wanted scenarios in a better way than the others
under some circumstances.
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Time-inconsistent TSD risk averse measure.
Motivation (c)

The measure also aims to maximize the objective function
expected value as RN.
Additionally, a modeler-driven set of given thresholds on
the value of given functions / criteria for each node in
selected stages in the scenario tree should be satisfied
with a bound target on the deficit (shortfall) on reaching
each threshold, a bound target on the probability of having
deficit and a bound target on the expected deficit.
TSD risk averse TSD measure (Alonso-Ayuso et al.,
EJOR’14; LFE-Garı́n-Merino-Pérez, 2015) for multistage
mixed 0-1 programs at the price of including some new
variables and constraints, as a mixture of the FSD:first-
(Gollmer-Neise-Schultz SIOPT’08), and SSD:second
order- (Gollmer-Gotzes-Schultz MP’11) stochastic
dominance constraints induced by integer-linear recourse
for two-stage
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Multicriteria in GEP / NEP

There is not a unique function / criterion to consider. Rather, it
is a multicriteria problem.

Maximizing NPV of expected investment and consumer
stakeholders goals over the scenarios along the time
horizon subject to risk reduction of the negative impact of
non-wanted scenarios on multiple types of utility
objectives and stakeholders:

Maximizing power share of cleaner, safer and efficient
-cheaper- energy accessible to all consumption nodes.
Minimizing cost investment from private and public
institutions,
Generation and Transmission Network reliability.
EC directives on environmental issues and others.
EU governments, etc.
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Time-inconsistent TSD risk averse measure:
Set of modeler-driven functions and profiles

F , set of functions / criteria to be satisfied, such that
function f = 1 is the objective fun to maximize.
Ef ⊆ E , set of stages where Time Stochastic Dominance
(TSD) has to be considered for function / criterion f ∈ F .
Set of profiles, say Pe

f for e ∈ Ef , f ∈ F ,
For each profile p ∈ Pe

f in TSD stage e ∈ Ef for function /
criterion f ∈ F :

φp, function f threshold to be satisfied up to the last period
in any node g of stage e in the scenario tree, for g ∈ Ge.
Dp, upper bound target on the deficit (shortfall) that is
allowed on reaching threshold φp up to the last period in
any node g of stage e, for g ∈ Ge.
d

p
, upper bound target on the expected deficit on reaching

threshold φp.
νp, upper bound target on the fraction of nodes with deficit
on reaching threshold φp.
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Time-inconsistent TSD risk averse measure:
Additional variables

For each pair node (g,p), where g is the scenario tree and p is
the profile in TSD stage e and function / criterion f , for
g ∈ Ge,p ∈ Pe

f ,e ∈ Ef , f ∈ F :

dg,p, deficit (shortfall) continuous variable that, obviously, is
equal to the difference (if it is positive) between threshold
φp and the value of function / criterion f up to last period of
node g.

νg,p, 0-1 variable such that its value is 1 if dg,p > 0 and
otherwise, 0.
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Time-inconsistent TSD risk averse measure:
Model

zTSD = máx
∑

g∈G

wg(ag
1xg +

∑

t∈T e(g)

bt,g
1 y t,g)

−
∑

f∈F

∑

e∈Ef

∑

p∈Pe
f

(Mp
Dε

p
D + Mp

d
εp

d
+ Mp

ν ε
p
ν)

subject to
∑

g′∈Ag

∑

t ′∈T e(g′):t ′≤t

(Ag′

t,gxg′

+ Bt ′,g′

t,g y t ′,g′

) = ht,g ∀t ∈ T e(g), g ∈ G

xg ∈ {0,1}nx(g), y t,g ∈ R
ny(t,g) ∀t ∈ T e(g), g ∈ G

and
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Time-inconsistent TSD risk averse measure:
Model (c.)

∑

g′∈Ag

(

ag′

f xg′

+
∑

t ′∈T e(g′)

bt ′,g′

f y t ′,g′)

+ dg,p ≥ φp

∀g ∈ Ge,p ∈ Pe
f ,e ∈ Ef , f ∈ F

dg,p ≤ Dpνg,p + ε
p
D, ν

g,p ∈ {0,1} ∀g ∈ Ge,p ∈ Pe
f ,e ∈ Ef , f ∈ F

∑

g∈Ge

wgdg,p ≤ d
p
+ εp

d
∀p ∈ Pe

f ,e ∈ Ef , f ∈ F

∑

g∈Ge

wgνg,p ≤ νp + εp
ν ∀p ∈ Pe

f ,e ∈ Ef , f ∈ F .
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Time-inconsistent TSD risk averse measure:
Model (c.)

dg,p ∈ R+ ∀g ∈ Ge,p ∈ Pe
f ,e ∈ Ef , f ∈ F

(34)

εp
D, ε

p
d
, εp

ν ∈ R+ ∀p ∈ Pe
f ,e ∈ Ef , f ∈ F ,
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where

εp
D, εp

d
and εp

ν , slack variables for the violation of the targets

Dp, d
p

and νp, respectively, and

Mp
D, Mp

d
and Mp

ν are the related penalization parameters for
the slack variables.

Notice that the appropriate hierarchy on the values of
those parameters for the different functions / criteria help
the decision maker (either GenCo or TSO) and concerned
stakeholders to play with the potential enforcing of the TSD
targets, depending on the priority-based classification of
the functions / criteria.
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Time-inconsistent TSD risk averse measure.
Comments

Following the rationale in Plugh’00 for the CVaR measure,
it can be shown that TSD is a coherent risk measure,
according to the standards setup in Artzner et al, MF’99
and ANOR’07, since it satisfies the properties: translation
invariance, positive homogeneity, monotonicity and
convexity.

Additionally, it can also be shown that the time-consistency
property (see the definition in Homem-de-mello &
Pagnoncelli, EJOR’16 and below) of TSD measure
depends on the bounds Dp + ε

p
D, d

p
+ ε

p
d

and νp + ε
p
ν , such

the tighter they are, the lower the probability of TSD to be
time-consistent. So, by extension, TSD is in general a
time-inconsistent measure.
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TIME-CONSISTENT EXPECTED STOCHASTIC
DOMINANCE (ESD) RISK AVERSE MEASURE
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Time-consistent ESD measure. New parameters

Let us consider the risk reduction by using the expected
stochastic dominance (for short, ESD) measure.

Remember Pe
f denote the set of profiles, for e ∈ Ef , f ∈ F .

Each profile is included by the 4-tuple (φp, Dp, d
p
, νp):

φp, threshold to be satisfied by any scenario in group Ωg

for g ∈ Ge, e ∈ Ef , f ∈ F ,
Dp, upper bound target on the deficit (shortfall) allowed for
any of those those scenarios,
d

p
, upper bound target on the expected deficit on reaching

threshold φp that is allowed for those scenarios,
νp, upper bound of the failure probability on reaching the
threshold.
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Time-consistent ESD risk averse measure: Model

zESD = máx
∑

g∈G

wg(ag
1xg +

∑

t∈T e(g)

bt,g
1 y t,g)

−
∑

f∈F

∑

e∈Ef

∑

p∈Pe
f

(Mp
Dε

p
D + Mp

d
εp

d
+ Mp

ν ε
p
ν) (35)

subject to
∑

g′∈Ag

∑

t ′∈T e(g′):t ′≤t

(Ag′

t,gxg′

+ Bt ′,g′

t,g y t ′,g′

) = ht,g ∀t ∈ T e(g), g ∈ G

xg ∈ {0,1}nx(g), y t,g ∈ R
ny(t,g) ∀t ∈ T e(g), g ∈ G

and
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Time-consistent ESD risk averse measure: Model (c.)

∑

g′∈Aω

(

ag′

f xg′

+
∑

t ′∈T e(g′)

bt ′,g′

f y t ′,g′)

+ dω,p ≥ φp

∀ω ∈ Ωg,g ∈ Ge,p ∈ Pe
f ,e ∈ Ef , f ∈ F

dω,p ≤ Dpνω,p + εp
D , ν

ω,p ∈ {0,1}

∀ω ∈ Ωg,g ∈ Ge,p ∈ Pe
f ,e ∈ Ef , f ∈ F

∑

ω∈Ωg

wωdω,p ≤ d
p
+ ε

p
d

∀g ∈ Ge,p ∈ Pe
f ,e ∈ Ef , f ∈ F

∑

ω∈Ωg

wωνω,p ≤ νp + εp
ν ∀g ∈ Ge,p ∈ Pe

f ,e ∈ Ef , f ∈ F
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Time-consistent ESD risk averse measure: Model (c.)

dω,p ∈ R+ ∀ω ∈ Ωg ,g ∈ Ge,p ∈ Pe
f ,e ∈ Ef , f ∈ F

εp
D , ε

p
d
, εp

ν ∈ R+ ∀p ∈ Pe
f ,e ∈ Ef , f ∈ F (36)
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Time-consistency property of ESD measure

The ESD measure can be included in the family so-named
expected conditional risk measures (ECRMs) considered
in Homem-de-Mello & Pagnoncelli, EJOR’16, where the
time-consistency property of those measures is proved,
according to the definition introduced there.

Notice that the proof only requires that the measure has
the properties of translation-invariance and monotonicity.
See some variants in Pflug & Pichler, MORS’15 and
EJOR’16; Rudloff, Street & Valladao, EJOR’14;
Ruszczyski, MPS’10, Shapiro, ORL’09, among others.

In our context that definition is presented next.
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Time-consistency property of ESD measure (c.)

Let x̂q and ŷq ∀q ∈ G denote the vectors of the values of
the variables in the vectors xq and yq of model ESD, res.,
for q ∈ G, for any of the optimal solutions.

Let z̃ESDg denote the value of the sum of the terms in the
objective function of model ESD related to the optimal
values x̂q and ŷq of the variables in the vectors xq and yq ,
res., for q ∈ Ãg ∪ Sg for any node g ∈ G, i.e.,

z̃ESDg =
∑

q∈Ãg∪Sg

wq(aq
1 x̂q +

∑

t∈T e(q)

bt,q
1 ŷ t,q).
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Time-consistency property of ESD measure (c.)

Let us consider the submodel ESDg of model ESD related to
any node g, for g ∈ G, whose elements are as follows:

The subtree that supports the submodel is given by the
node set Ãg ∪ Sg , such that it is included by the nodes
from the original scenario tree up to node g plus the
subtree rooted in that node up to the leaves of the original
scenario tree.

The input data of the submodel is taken from the
appropriate nodes in model ESD for any scenario tree of
any set Ω.

The variables in the vectors xg and yq ∀q ∈ Ag are fixed in
submodel ESDg to the related values in the vectors x̂q and
ŷq in the optimal solution of model ESD that is being
considered.
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Time-consistency property of ESD measure.
Submodel ESDg, g ∈ G

zESDg = máx
∑

q∈Ãg∪Sg

wq(aq
1xq +

∑

t∈T e(q)

bt,q
1 y t,q)

−
∑

f∈F

∑

e∈Ef :e>e(g)

∑

p∈Pe
f

(Mp
Dε

p
D + Mp

d
εp

d
+ Mp

ν ε
p
ν)

subject to
∑

q∈Ag′

∑

t ′∈T e(q):t ′≤t

(Aq
t,g′xq + Bt ′,q

t,g′y t ′,q) = ht,g′

∀t ∈ T e(g′),g′ ∈ Sg

xq = x̂q, y t,q = ŷ t,q ∀t ∈ T e(q),q ∈ Ã

xq ∈ {0,1}nx(q), y t,q ∈ R
ny(t,q) ∀q ∈ Ãg ∪ Sg

and
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Time-consistency property of ESD measure.
Submodel ESDg, g ∈ G (c.)

∑

q∈Aω

(

aq
f xq +

∑

t∈T e(q)

bq
f yq)+ dω,p ≥ φp

∀ω ∈ Ωq,q ∈ Ge,p ∈ Pe
f ,e ∈ Ef , f ∈ F ,e > e(g)

dω,p ≤ Dpνω,p + εp
D, ν

ω,p ∈ {0,1}

∀ω ∈ Ωq,q ∈ Ge,p ∈ Pe
f ,e ∈ Ef , f ∈ F ,e > e(g)

∑

ω∈Ωq

wωdω,p ≤ d
p
+ εp

d
∀q ∈ Ge,p ∈ Pe

f ,e ∈ Ef , f ∈ F ,e > e(g)

∑

ω∈Ωq

wωνω,p ≤ νp + ε
p
ν ∀g ∈ Ge,p ∈ Pe

f ,e ∈ Ef , f ∈ F ,e > e(g)
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Time-consistency property of ESD measure.
Submodel ESDg, g ∈ G (c.)

dω,p ∈ R+ ∀ω ∈ Ωq,q ∈ Ge,p ∈ Pe
f ,e ∈ Ef , f ∈ F ,e > e(g)

εp
D, ε

p
d
, εp

ν ∈ R+ ∀p ∈ Pe
f ,e ∈ Ef , f ∈ F ,e > e(g)
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Time-consistency property of ESD measure (c.)

So, it happens that the ESD measure is time-consistent,
since the following assertion is truth: z̃ESDg = zESDg , for
any node g ∈ Ge,p ∈ Pe

f ,e ∈ Ef , f ∈ F , any scenario tree,
any profile set for any set period, and any other input data.

Now, let us assume that the decisions in a given problem
up to any of those nodes, say g, (i.e., the decisions in node
set Ãg) have been made according to the solution obtained
in the original model ESD ’solved’ at period t=1.

Then, the rationale behind a time-consistent risk averse
measure is that the solution value to be obtained for the
nodes in its successor set Sg in the scenario tree for the
related submodel ESDg ’solved’ at stage e(g) should have
the same value as in the original model ESD ’solved’ at
period t=1.
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Time-consistency property of ESD measure (c.)

For practical reasons, the cardinality of the chosen stage
set e ∈ Ef , f ∈ F for risk reduction in the ESD measure
should be small.

Additionally, the profile p ∈ Pe
f could be different for the

nodes g in set Ge,e ∈ Ef , f ∈ F , provided that there are
high differences in the objective function coefficients, al
least, for the scenarios that belong to those different
groups in the same stage.

It is worth to point out that the function values in
function set F for risk reduction in model ESD refer to
the scenarios in set Ωg up to the end of the time
horizon, for g ∈ Ge.

On the other hand, the risk reduction in model TSD,
although referring to the same scenario group, it is
only up to node g.
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Time-consistency property of ESD measure (c.)

Since Ωq ⊂ Ωg for t(q) > t(g) and given the structure of
ESD for risk reduction, it results that this measure, as any
other ECRM with cross-node constraints,
is very appropriate for considering the stochastic dynamic
programming decomposition (SDP) methodology

introduced in Pereira & Pinto, WRR85, MP’91 as a suitable
tool for solving large sized instances,
see also below and Cristobal, LFE, Monge, COR’09; LFE,
Monge & Romero-Morales, TS’13, COR’15, COR’16
(submitted); and others.
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Time-consistency property of ESD measure (c.)

An interesting question: What measure performs better
for risk management either time-consistent or
time-inconsistent?

Both address risk reduction at different time periods.

A mixture of both is an ideal measure.
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Laureano F. Escudero Universidad Rey Juan Carlos, Móstoles (Madrid), Spain laureano.escudero@urjc.es Math Methods and SoftwareGEP-NEP-TSD-ESD-SDP-HPC



Contents

TYPES OF DECOMPOSITION METHODS FO0R
STOCHASTIC OPTIMIZATION
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1 Benders Decomposition (BD) methodology (Benders,
NM’62). Slyke & Wets SIAM’69 is the well-known first
published algorithm in the subject. See also Aranburu et al.
2012; Lumbreras & Ranmos WN’13, among many others.
The (nested) version for multistage problems, Birge MP’95.

2 Two-stage Lagrangean Decomposition (LD) heuristic
methodology. See Caroe & Schultz 99; LFE et al., COR’13;
Li & Ierapetritou, AIChE’12; Oliveira et al., SIPTO11;
Oliveira et al., C&ChE13; Sagastizabal, MP’12, among
many others. See also Gollmer-Neise-Schultz SIOPT’08;
Gollmer-Gotzes-Schultz MP’11.

3 Multistage Clustering Lagrangean Decomposition (MCLD)
heuristic methodology. See also LFE et.,al., COR’15; LFE
et al., 2015a; 2015, LFE et., 2016; Mahlke 2011; Queiroz &
Morton, ORL’13.
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4 Regularization. See Asamov & Poowell arXiv’15, Mulvey &
Ruszczynski, OR’95; Li & Ierapetritou, AIChE’12;,
Rruszczynski MOR’95; Ruszczynski & Swietanowsk,
SIOPT’97; Sen & Zhou, EJOR’14.

5 Progressive Hedging algorithm (PHA) for multistage primal
decomposition was introduced in Rockafellar & Wets,
MOR’91, Watson & Woodruff, CMS’11.

6 Multistage Stochastic Dynamic Programming (SDP).
SDDP methodology, see Pereira & Pinto WRR’85, MP91;
Ruszczynski, MP’93; LFE, Monge, Morales Tomero, TS’13;
with CVaR risk averse measure see Aldasoreo et al.,
TOP’15; Cristobal, LFE, Monge COR’09; Guiges COAP’14;
Kozmik & Morton, OptimizationOnlin’13; Shapiro et al.,
EJOR’13; and with SD LFE, Monge & Romero Morales
COR’25, 2016.

7 Multistage cluster primal decomposition. LFE et al.,
COR’10, COR’12, EJOR’16; Mahlke 2011;
Pages-Bernaus, Peres-Valdes & Tomasgard, EJOR’13;
Sandikci, Kong &. Schaefer, MP’13; Zenarosa, 2014.
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Exact multistage decomposition methods

Lagrangean lower bound and feasible solns providers
MCLD-RN (Escudero, Garı́n & Unzueta, COR’15)
MCLD-TSD (Escudero, Garı́n & Unzueta, to be submitted
March 2016)
ENDO-MCLD-ESD (Escudero, Garı́n, Monge & Unzueta, in
preparation)

Exact Nested Benders
Exact Branch-and-Fix Coordination:

BFC risk neutral (Escudero, Garı́n, Merino & Pérez,
COR’12)
PC-BFC (Aldasoro, Escudero, Merino & Pérez, COR’13)
BFC-TSD (Escudero, Garı́n, Merino & Pérez, EJOR’15)
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Inexact multistage decomposition methods (c.)

ELP (Beltrán-Royo, Escudero, Monge &
Rodriguez-Revines, COR’14)

PC SDP (Aldasoro, Escudero, Merino, Monge & Pérez,
TOP’14)

SDP-SD (Escudero, Monge & Romero-Morales, COR’15)

SDP-TSD/ESD (Escudero, Monge & Romero-Morales,
submitted 2016)

PC DBFC-RN (Aldasoro, Escudero, Merino, Monge &
Pérez, submitted 2015)

FRC-TSD(Escudero, Garı́n, Pizarro & Unzueta, in
preparation)
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SDP-ESD Introduction

SDP-ESD, a SDP matheuristic algo, which combines
consecutive stages in a set of stageblock, say B, such that
E = ∪b∈BE

b, Eb ∩ Eb′

= ∅,b,b′ ∈ B : b 6= b′, where Eb is
the set of stages in block b. B = |B|

So, it decomposes the stochastic problem (35)-(36) into a
collection of subproblems supported by scenarios subtrees
as many as nodes in the original tree related to the first
stage in the block.

The subproblems in a block are linked to successor
subproblems by the so-called linking decision variables.

The immediate successor nodes to each leaf node in the
scenario subtree that support the related subproblem in a
given block are the root nodes of a set of scenario subtrees
in the immediate consecutive stageblock to the given block.
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SDP-ESD Introduction (c.)

For solving the subproblems the concept of the so-called
Expected Future Value (EFV) curves is used.

Those curves estimate the impact of the linking decisions
made at a given stageblock in the objective function value
related to the future blocks.

SDP-ESD is an iterative matheuristic where each iteration
consists of a forward scheme followed by a backward
scheme.
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SDP-ESD Introduction (c.)

The forward scheme is intended to improve the current
solution, where the single subproblem in the first
stageblock is solved and the linking variables are fed to
subproblems in the second stageblock, which in turn are
solved.

This process is repeated until the last stageblock is
reached, yielding a new solution.
The backward scheme refines the current EFV curves by
using this new solution.

The EFV curves in the last stageblock are equal to zero
since there are no future stageblock, thus the backward
scheme starts in stageblock |B| − 1.
To refine those curves in stageblock |B| − 1, strong duality
theory is applied to the subproblems in stageblock |B|
around the new solution.

This process is repeated until first stageblock.
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SDP-ESD Introduction (c.)

The new proposal is designed to deal with model ESD and
it is not a trivial task. Apart from the problem size that is
allowed, another major challenge is to deal with the
(probably, numerous) cross-scenario constraints that link
the scenario groups g in a modeler-driven stage subset.
The SD bounds are d

p
and νp, for

g ∈ Ge,p ∈ Pe
f ,e ∈ Ef , f ∈ F , such that e ∈ EB : e < E .

It is worth to point that, by construction, each subproblem
to solve at any stageblock but the last one has not full
information about the value of the objective function terms
related to later stageblock, but an estimation.

Notice that the later the stageblock as well as the deeper
the iteration in the algorithm, the more precise the
information is.
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Definitions / Notation for the subproblems

Gb ⊆ G, set of nodes in stageblock b, for b ∈ B.

Rb ⊆ Gb, set of root nodes to the subtrees of stageblock b.

Cr ⊆ Gb, set of nodes in Gb that belong to the subtree
rooted in node r , for r ∈ Rb,b ∈ B.

Lr ⊆ Cr , set of leaf nodes in Cr , for r ∈ Rb, b ∈ B.
˜̃Aℓ ⊆ Aℓ, set consisting of leaf node ℓ ∈ Lr and its

ancestors, such that their variables have nonzero
elements in constraints associated with the nodes
in the immediate successor subproblems to node
ℓ, defined by

⋃

r ′∈Se
1 ll Cr ′ , for

ℓ ∈ Lr , r ∈ Rb, b ∈ B\{B}.
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Definitions / Notation for the subproblems (c.)

Without loss of generality, let us assume that the node set
{g ∈ G : e(g) ∈ Ef for performing risk reduction in the value of
function f for f ∈ F is a subset of Cr , r ∈ RB, i.e., only the
nodes that belong to the stages in the last block can be a
subject of risk reduction:

P f , set of profiles {p ∈ Pe
f , e ∈ Ef ∩ EB : e < E}.
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t = 1 2 3 4 5 6 7
b = 1 b = 2

1 2 3 4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

G2
= {5, . . . , 25}

R2
= {5, 6, 7}

C5
= {5, 8,9, 14,15,16, 17}

L1
= {4}
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Definitions / Notation for the subproblems (c.)

Consider r for r ∈ RB .

x̂g , ŷ t,g : Given values of vectors xg , y t,g , for
t ∈ T e(g), g ∈ Ãβ(r).

For p ∈ Pe
f , e ∈ Ef ∩ EB : e < E , f ∈ F :

ESD variables:
dω,p: Deficit (shortfall) of function f ’s value of scenario ω in
set Ωg for e ≡ e(g).
νω,p: Its value if dω,p > 0 and otherwise, 0.

ESD bounds:
d

p
and νp.
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EFV: λ
′r
r ′(·) function for

r ′ ∈ Sℓ
1, ℓ ∈ Lr , r ∈ Rb, b ∈ B \ {B}

It gives an approximation of the future value of function 1 in
the set of scenarios Ωr ′ , related to the set of stageblocks
{b′ ∈ B : b′ > b}.

It has the argument (·) = (xg , y t,g ∀t ∈ T e(g),g ∈ ˜̃Aℓ).
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ESDr subproblem supported by subtree whose nodes
in Cr for root node r ∈ Rb, b ∈ B

Remember P f : set of profiles {p ∈ Pe
f , e ∈ Ef ∩ EB : e < E}, for

function f ∈ F .

F
′

r (x̂
g , ŷ t,g∀t ∈ T e(g), g ∈ ˜̃Aβ(r)) =

máx
∑

ℓ∈Lr

wℓ[
∑

g∈Ãℓ

(ag
1xg +

∑

t∈T e(g)

bt,g
1 y t,g) + (1 − ρr )

∑

r ′∈Sℓ
1

λ
′r
r ′(·)]−

ρr
∑

f∈F

∑

p∈P f

(Mp
Dε

p
D + Mp

d
εp

d
+ Mp

ν ε
p
ν) (37)

where ρr = 1 for r ∈ RB , otherwise, 0. subject to (41)-(46).
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ESDr subproblem supported by subtree whose nodes
in Cr for root node r ∈ Rb, b ∈ B (c.)

Remember P f : set of profiles {p ∈ Pe
f , e ∈ Ef ∩ EB : e < E}, for

function f ∈ F .
∑

g′∈Ag

∑

t ′∈T e(g′):t ′≤t

(Ag′

t,gxg′

+ Bt ′,g′

t,g y t ′,g′

) = ht,g

∀t ∈ T e(g), g ∈ Cr (38)

xg = x̂g , y t,g = ŷ t,g ∀t ∈ T e(g),g ∈ Ãβ(r) : t(r) > 1 (39)

xg ∈ {0,1}nx(g), y t,g ∈ R+ ∀t ∈ T e(g),g ∈ Aℓ, ℓ ∈ Lr (40)
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ESDr subproblem supported by subtree whose nodes
in Cr for root node r ∈ RB of last stageblock B

Remember P f : set of profiles {p ∈ Pe
f , e ∈ Ef ∩ EB : e < E}, for

function f ∈ F .

For ∀p ∈ P f , f ∈ F :
∑

g′∈Ãω

(ag′

f xg′

+
∑

t ′∈T e(g′)

)bt ′,g′

f y t ′,g′

) + dω,p ≥ φp

∀ω ∈ Ωg : e = e(g) (41)

dω,p ≤ Dpνω,p + εp
D ∀ω ∈ Ωg : e = e(g) (42)

∑

ω∈Ωg :e=e(g)

wωdω,p ≤ d
p
+ εp

d
(43)

∑

ω∈Ωg :e=e(g)

wωνω,p ≤ νp + ε
p
ν (44)

dω,p ∈ R+, ν
ω,p ∈ {0,1} ∀ω ∈ Ωg : e = e(g) (45)

εp
D, ε

p
d
εp
ν ∈ R+ (46)
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EFV curve λr
r ′, r ′ ∈ Sℓ

1, ℓ ∈ Lr , r ∈ Rb, b ∈ B \ {B}

It is a piecewise linear convex function, as an
approximation of the future value of function 1 in the set of
scenarios Ωr ′, to be obtained using strong duality theory at
the reference levels.

It gives an approximation of the future value of function f in
the set of scenarios Ωr ′ , related to the set of stageblocks
{b′ ∈ B \ {B} : b′ > b}.

Let Z r
r ′ denote the set of reference levels, where the z-th

one is included by vector

(X̂ z
ℓ ; π

qz

r ′ , γ
(t,q)z

r ′ ∀t ∈ T e(q), q ∈ ˜̃Aℓ; µz
r ′), (47)

where
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EFV curve λr
r ′, r ′ ∈ Sℓ

1, ℓ ∈ Lr , r ∈ Rb, b ∈ B \ {B}(c.)

X̂ z
ℓ ≡ (x̂qz

, ŷ (t,q)z
∀t ∈ T e(q), q ∈ ˜̃Aℓ) (48)

π
qz

r ′ , γ
(t,q)z

r ′ : the expected dual vectors of constraints (39):

xg = x̂g, y t,g = ŷ t,g ∀t ∈ T e(g),g ∈ Ãβ(r) : t(r) > 1

in subproblem (37)-(46) for r ′ ∈ Sℓ
1.

µz
r ′ = Fr (X̂ z

ℓ )−
∑

q∈ ˜̃Aℓ

(

π
qz

r ′ x̂qz
+

∑

t∈T e(q)

γ
(t,q)z

r ′ ŷ (t,q)z )

so that EFV curve λr
r ′ can be expressed

λr
r ′ = máxz∈Z r

r ′

{

µz
r ′ +

∑

q∈ ˜̃Aℓ

(

πqz

r ′ xqz
+

∑

t∈T e(q)

γ
(t,q)z

r ′ y (t,q)z )

(49)
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Approximating ESDr subproblem (37)-(46) supported
by subtree whose nodes in Cr for root node
r ∈ Rb, b ∈ B

Remember P f : set of profiles {p ∈ Pe
f , e ∈ Ef ∩ EB : e < E}, for

function f ∈ F .

Fr (X̂ r (48)) =

máx
∑

ℓ∈Lr

wℓ[
∑

g∈Ãℓ

(ag
1xg +

∑

t∈T e(g)

bt,g
1 y t,g) + (1 − ρr )

∑

r ′∈Sℓ
1

λr
r ′ ]−

ρr
∑

f∈F

∑

p∈P f

(Mp
Dε

p
D + Mp

d
εp

d
+ Mp

ν ε
p
ν) (50)

subject to (51)-(54).
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Approximating ESDr subproblem (37)-(46) supported
by subtree whose nodes in Cr for root node
r ∈ Rb, b ∈ B (c.)

Remember P f : set of profiles {p ∈ Pe
f , e ∈ Ef ∩ EB : e < E}, for

function f ∈ F .

s.t. Constraints (38) and (42)-(46) (51)

λr ′
f ≥ µz

r ′ +
∑

g∈ ˜̃Aℓ

(

πqz
xqz

+
∑

t∈T e(q)

γ
(t,q)z

f y (t,q)z )

∀r ′ ∈ Sℓ
1, ℓ ∈ Lr , z ∈ Z : b < B (52)

∑

q∈Ãω

(aq
f xq +

∑

t∈T e(q)

bt,q
f y t,q) + dω,p ≥ φp

∀ω ∈ Ωg : e = e(g), p ∈ P f , f ∈ F : b = B (53)

λℓ ∈ R ℓ ∈ Lr . (54)
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Rough idea of iterative matheuristic SDP-ESD

Remember P f : set of profiles {p ∈ Pe
f , e ∈ Ef ∩ EB : e < E}, for

function f ∈ F .

Each iteration of the SDP-ESD matheuristic consists of a
forward scheme, followed by a backward scheme. See
Escudero, Monge & Romero-Morales, COR’15 for the details.

The forward scheme is aimed at building a solution for the
original problem by solving models (51)-(54) ∀r ∈ Rb, b ∈ B.

The backward scheme is aimed at refining the EFV curves
around the solution X̂ r (48) built in that iteration.

Subproblems from last stageblock B to 1st one1 are solved,
passing the refinement of the EFV curves (52) onto the
subproblems in the previous stageblock.

EFV curve λr
r ′ , for r ′ ∈ Sℓ

1, ℓ ∈ Lr , r ∈ Rb, b ∈ B \ {B} is refined
in a back-to-front scheme by adding a new reference level, and,
then appending a new cons.
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