
overview

algorithms for solving semidefinite programs

I interior point methods

I spectral bundle methods

I bundle method

I projection methods



semidefinite programs: primal and dual

(SDP)


min 〈C ,X 〉
s.t. A(X ) = b

X � 0

min
X�0

max
y∈Rm

〈C ,X 〉+〈b −A(X ), y〉 ≥ max
y∈Rm

min
X�0
〈b, y〉+〈X ,C −A>(y)〉

(DSDP)


max b>y
s.t. A>(y) + Z = C

y ∈ Rm,Z � 0



algorithms for SDP

SDP for max-cut and ϑ-number

I max-cut: sizes of interest n around 100, strengthened
relaxation leads to more than 10 000 constraints.

I ϑ-number: sizes of interest n ≥ 500, results in 100 000
constraints.

−→ need other algorithmic machinery than interior point methods.
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spectral bundle method

assume m and n are large
−→ avoid Cholesky factorization, matrix multiplication,...

idea: get rid of Z � 0 by using eigenvalue arguments.



spectral bundle method

A has constant trace property if I is in the range of A>, i.e.,
∃µ such that A>(µ) = I .

The constant trace property implies:

A(X ) = b,A>(µ) = I

=⇒ trace(X ) = 〈I ,X 〉 = 〈A>(µ),X 〉 = 〈µ,A(X )〉 = µ>b =: a

constant trace property holds for many SDP derived from
combinatorial optimization problems.
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spectral bundle method

Reformulate dual as follows:

min{b>y : A>(y)− C = Z � 0}

Adding (redundant) primal constraint tr(X ) = a (thus introducing
new dual variable, say λ) and dual becomes:

min{b>y + aλ : A>(y)− C + λI = Z � 0}

X ∗,Z ∗ optimal
=⇒ X ∗Z ∗ = 0, hence Z ∗ is singular and λmin(Z ∗) = 0.

−→ used to compute dual variable λ explicitely
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spectral bundle method

λmin(Z ∗) = 0 ⇐⇒ λmax(−Z ∗) = 0

⇐⇒ λmax(C −A>(y∗)− λ∗I ) = 0

⇐⇒ λmax(C −A>(y∗))− λ∗ = 0

⇐⇒ λ∗ = λmax(C −A>(y∗))

rewrite the dual:

min{b>y + λmax(C −A>(y)) : y ∈ Rm}

−→ non-smooth unconstrained convex problem in y .

note: evaluating f (y) = b>y + λmax(C −A>(y)) amounts in
computing largest eigenvalue of C −A>(y)
−→ can be done by iterative methods even for very large (sparse)
matrices.
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spectral bundle method

λmax(X ) = max{〈X ,W 〉 : trace(W ) = 1,W � 0}

Define
L(W , y) := 〈C −A>(y),W 〉+ b>y

hence,

f (y) = max{L(W , y) : trace(W ) = 1,W � 0}

two ingredients:

I minorant for f (y)

I proximal point approach
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spectral bundle method

Idea 1: Minorant for f (y)

Fix some m × k matrix P. k ≥ 1 can be chosen arbitrarily
[choice of P will be explained later]

replace feasible region {W : trace(W ) = 1,W � 0} by
computational more practical subset

W = {W : W = PVP>, trace(V ) = 1,V � 0}

with new k × k matrix variable V .

f̂ (y) := max{L(W , y) : W = PVP>, trace(V ) = 1,V � 0} ≤ f (y)
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spectral bundle method

Idea 2: Proximal point approach

The function f̂ (depending on P) will be a good approximation to
f (y) only in some neighbourhood of the current iterate ŷ .

−→ penalize displacement by adding ‖y − ŷ‖2.

Instead of minimizing f (y) we

min f̂ (y) +
u

2
‖y − ŷ‖2

This is a strictly convex function, if u > 0 is fixed.

substituting the definition of f̂ . . .
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spectral bundle method

min
y∈Rm

f̂ (y) +
u

2
‖y − ŷ‖2 =

= min
y∈Rm

max
W∈W

L(W , y) +
u

2
‖y − ŷ‖2 =

= min
y∈Rm

max
W∈W

〈C −A>(y),W 〉+ b>y +
u

2
‖y − ŷ‖2 =

= max
W∈W

{〈C −A>(y),W 〉+ b>y +
u

2
‖y − ŷ‖2 :

y = ŷ +
1

u
(A(W )− b)} =

= max
W∈W

{〈C −A>(ŷ),W 〉+ b>ŷ − 1

2u
‖A(W )− b‖2

quadratic SDP in the k × k matrix variable V , since W = PVP>.
k is user defined and can be small, in particular, it is independent
of n.
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‖y − ŷ‖2 =

= min
y∈Rm

max
W∈W

〈C −A>(y),W 〉+ b>y +
u

2
‖y − ŷ‖2 =
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spectral bundle method

I solve maximization problem (using interior point methods) to
obtain V and thus W = PVP>

I ynew = ŷ + 1
u (A(W )− b)

What is P?

Having point ynew , evaluation f (ynew ) (sparse eigenvalue
computation) produces also an eigenvector v to λmax.

−→ eigenvector v is added as new column to P,
and P is purged by removing unnecessary other columns.
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spectral bundle method

computational effort:

I solve quadratic SDP of size k

I compute λmax of matrix of order n

software SBmethod a C++ implementation of the spectral bundle
method of [Helmberg and Rendl 00; Helmberg and Kiwiel 99] no
longer supported, but now there is the ConicBundle callable library
instead; available at https:
//www-user.tu-chemnitz.de/~helmberg/ConicBundle/

https://www-user.tu-chemnitz.de/~helmberg/ConicBundle/
https://www-user.tu-chemnitz.de/~helmberg/ConicBundle/
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spectral bundle method

example: consider again the basic max-cut relaxation

max{〈L,X 〉 : diag(X ) = e,X � 0}

Now 20 000 ≤ n ≤ 50 000, sparse graphs.



spectral bundle method

n upper-bnd cut time (secs)

20,000 143.3 131.3 330
20,000 261.9 244.8 536
20,000 598.1 571.1 1255
30,000 214.9 197.2 753
30,000 393.3 367.4 990
30,000 897.9 857.3 2330
40,000 286.9 262.7 1180
40,000 524.6 489.8 1650
50,000 358.9 328.5 1800



spectral bundle method

spectral bundle method summarized

I using eigenvalue optimization and classical methods from
convex analysis

I general tool for solving SDP having matrices of large
dimension

I convergence is slow, once close to optimum
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bundle method

We would like to compute

z∗ = max{〈C ,X 〉 : A(X ) = a, B(X ) = b, X � 0}

Optimizing over A(X ) = a,X � 0 without B(X ) = b is “easy”,
but inclusion of B(X ) = b makes SDP difficult.

partial Lagrangian dual (y dual to B(X ) = b):

L(X ; y) = 〈C ,X 〉+ y>(b − B(X ))

dual functional:

f (y) = max
A(X )=a,X�0

L(X ; y)

and thus
z∗ = min

y∈Rm
f (y)
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partial Lagrangian dual (y dual to B(X ) = b):

L(X ; y) = 〈C ,X 〉+ y>(b − B(X ))

dual functional:
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bundle method

z∗ = min
y∈Rm

f (y)

with

f (y) = max
A(X )=a,X�0

〈C ,X 〉+ y>(b − B(X ))

= b>y + max
A(X )=a,X�0

〈C − B>(y),X 〉

evaluating f (y) amounts in solving an SDP.

basic assumption: we can evaluate f (y) easily, yielding also a
maximizer X ∗ and g∗ = b − B(X ∗).
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bundle method

using g∗ = b − B(X ∗) if X ∗ is the optimizer for given ȳ :

f (ȳ) = b>ȳ + 〈C − B>(ȳ),X ∗〉 =

= 〈b − B>(X ∗), ȳ〉+ 〈C ,X ∗〉 = 〈g∗, ȳ〉+ 〈C ,X ∗〉

for any y we have

f (y) ≥ b>y + 〈C − B>(y),X ∗〉 =

= 〈b − B(X ∗), y〉+ 〈C ,X ∗〉 = 〈g∗, y〉+ 〈C ,X ∗〉

combining, we get:

f (y)− f (ȳ) ≥ 〈g∗, y〉+ 〈C ,X ∗〉 − 〈g∗, ȳ〉 − 〈C ,X ∗〉

i.e.,
f (y) ≥ f (ȳ) + 〈g∗, y − ȳ〉 ∀y

hence g∗ = b − B(X ∗) is subgradient.
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i.e.,
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bundle method

since

z∗ = min
y∈Rm

f (y)

≤ f (ỹ) ∀ỹ ∈ Rm

any ỹ ∈ Rm provides upper bound on z∗

−→ try to find tight upper bound (i.e., approximate minimizer of
f (y)) by using bundle methods.
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bundle method

two ingredients:

I work with a “bundle” of Xi ’s and maximize over
conv{X1, . . . ,Xk} instead of over {A(X ) = a,X � 0}

I penalize displacement from current iterate, i.e., add penalty
term 1

2t ‖y − ŷ‖2

min
y

f̂ (y) +
1

2t
‖y − ŷ‖2

f̂ (y) = max
X∈conv{X1,...,Xk}

L(X ; y)
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bundle method
iterative procedure:

I solve approximately

min
γ≥0

f̂ (y) +
1

2t
||y − ŷ ||2

where

f̂ (y) = max{L(X ; y) : X ∈ conv{X1, . . . ,Xk}

giving y

I evaluate

f (y) = b>y + max{〈C − B>(y),X 〉 : A(X ) = a, X � 0}

computational effort in each iteration:

I solve a convex quadratic program in k variables

I evaluate f (ŷ) to yield new X̂ and a subgradient ĝ
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bundle method

example: solving the max-cut relaxation strengthened by
triangle-inequalities:

max{〈L,X 〉 : diag(X ) = e,M(X ) ≤ −e,X � 0}

dualize the triangle-inequalities M(X ) ≤ −e, evaluating f (y) is
then solving

max{〈L−M>(y),X 〉 : diag(X ) = e,X � 0}

SDP with matrix dimension n and only n linear constraints.
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bundle method

SDP relaxation for max-cut; triangle inequalities are dualized.
50 bundle iterations for n = 800, and 30 for n = 2000.

graph n initial gap (%) final (%) time (secs)

G6 800 22.29 18.15 43.11
G11 800 11.56 1.54 60.20
G14 800 4.51 2.84 59.68
G18 800 18.38 7.96 69.19
G22 2000 6.34 5.66 278.06
G27 2000 25.77 22.94 406.66
G39 2000 21.27 12.63 533.36

see [Fischer, Gruber, Rendl, Sotirov, 06]



bundle method

software: ConicBundle C++ library of Ch. Helmberg, available at
https:

//www-user.tu-chemnitz.de/~helmberg/ConicBundle/

https://www-user.tu-chemnitz.de/~helmberg/ConicBundle/
https://www-user.tu-chemnitz.de/~helmberg/ConicBundle/


bundle method

bundle method summarized

I in combination with interior point methods is a good tool to
approximate SDPs with a huge number of constraints

I the number of function evaluations to reach good
approximations is surprisingly small

I getting to the “real” optimum is hard



overview

algorithms for solving semidefinite programs

I interior point methods

I spectral bundle method

I bundle methods

I projection methods



augmented Lagrange algorithm

min f (x) such that x ∈ X , h(x) = 0

f : Rn 7→ R, h : Rn 7→ Rm sufficiently smooth functions, X ⊆ Rn

nonempty closed convex set of simple structure

Lσ(x , y) := f (x) + y>h(x) +
σ

2
‖h(x)‖2

repeat until convergence
(a) Keep y fixed: solve minx Lσ(x , y) to get x
(b) update y : y ← y + σh(x)
(c) update σ

Original version: Powell, Hestenes, 1969
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augmented Lagrange algorithm

(DSDP) min b>y s.t. A>(y)− C = Z , Z � 0

Lσ(y ,Z ;X ) = b>y + 〈X ,Z +C −A>(y)〉+
σ

2
‖Z +C −A>(y)‖2
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projection methods

inner minimization

min
y ,Z�0

Lσk (y ,Z ;X )

Define W(y) := A>(y)− C − 1

σ
X

Lσ(y ,Z ;X ) = b>y + 〈X ,Z + C −A>(y)〉+ σ
2 ‖Z + C −A>(y)‖2

= b>y + 1
σ‖Z −W(y)‖2 − 1

2σ‖X‖
2

min
y ,Z�0

b>y +
1

σ
‖Z −W(y)‖2
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projection methods

inner minimization: optimality conditions

Lσ(y ,Z ;V ) = b>y +
1

σ
‖Z −W(y)‖2 − 〈V ,Z 〉

∇yL = 0⇒ σA(A>(y)) = σA(Z + C ) + (A(X )− b)

∇ZL = 0⇒ V = σ(Z −W(y))

V � 0, Z � 0,VZ = 0.
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projection methods

solve coordinatewise:
keep Z (and X ) constant, y is given by the unconstrained
minimization

σA(A>(y)) = σA(Z + C ) + (A(X )− b)

keep y (and X ) constant, Z is given by the projection onto the
positive semidefinite cone

min
Z�0
‖Z −W(y)‖2

Z =W(y)+
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projection methods

boundary point method

Initialization: k = 0, select σk > 0, Xk � 0,Zk � 0

repeat until convergence
(a) Keep Xk fixed.

repeat until convergence
– solve A(A>(y)) = rhs giving yk
– compute Zk =W(yk)+

(b) Update X : Xk+1 = −σW(yk)−
(c) Select σk+1 ≥ σk .
(d) Check the stopping condition and increase k

See Malick, Povh, Rendl, W., 2007
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projection methods

observation: X � 0, Z � 0, ZX = 0 hold throughout the
algorithm; once primal and dual feasibilty reached we are optimal.

computational effort in each iteration:

I solve A(A>(y)) = rhs giving updated ỹ

I compute Z̃ = (A>(y)− C − 1
σX )+

example: when computing the ϑ-number: A(A>(.)) is diagonal.
Therefore, the main computational effort is the projection on the
positive semidefinite cone.
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I solve A(A>(y)) = rhs giving updated ỹ

I compute Z̃ = (A>(y)− C − 1
σX )+

example: when computing the ϑ-number: A(A>(.)) is diagonal.
Therefore, the main computational effort is the projection on the
positive semidefinite cone.



projection methods

example: computing the ϑ-number for random graphs from the
Kim Toh collection

graph n |E | time (secs)

theta82 400 23871 87
theta83 400 39861 70

theta102 500 37466 143
theta103 500 62515 110
theta104 500 87244 124
theta123 600 90019 205
theta162 800 127599 570



projection methods

boundary point method summarized

I works “orthogonal” to interior point methods

I convergence behavior not well understood

I for matrices of moderate size, but can deal with a large
number of constraints



conclusions

Semidefinite Programming solvers at the NEOS site:
http://www.neos-server.org/

I csdp

I dsdp

I penbmi

I pensdp

I sdpa

I sdplr

I sdpt3

I sedumi

moreover: sdplib [B. Borchers] at
http://euler.nmt.edu/~brian/sdplib/ and the sdp website
[Ch. Helmberg] at
http://www-user.tu-chemnitz.de/~helmberg/semidef.html

http://www.neos-server.org/
http://euler.nmt.edu/~brian/sdplib/
http://www-user.tu-chemnitz.de/~helmberg/semidef.html


conclusions

I solution method to choose depends on sizes and on structure
of problems

I interior point methods: many implementations available, limit
n ≈ 1000, m ≈ 10 000

I spectral bundle method: general tool for matrices of large
dimension

I bundle method: if partial Lagrangian dual is “nice”

I more methods: augmented Lagrangian methods, projection
methods, low-rank methods,. . .

I SDP is standard tool in optimization and sufficiently easy to
use(?)

thank you for your attention!
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