

algorithms for solving semidefinite programs

- interior point methods
- spectral bundle methods
- bundle method
- projection methods

semidefinite programs: primal and dual

$$(SDP) \begin{cases} \min & \langle C, X \rangle \\ \text{s.t.} & \mathcal{A}(X) = b \\ & X \succeq 0 \end{cases}$$

 $\min_{X \succeq 0} \max_{y \in \mathbb{R}^m} \langle C, X \rangle + \langle b - \mathcal{A}(X), y \rangle \geq \max_{y \in \mathbb{R}^m} \min_{X \succeq 0} \langle b, y \rangle + \langle X, C - \mathcal{A}^\top(y) \rangle$

$$(\mathbf{DSDP}) \begin{cases} \max & b^{\top}y \\ \text{s.t.} & \mathcal{A}^{\top}(y) + Z = C \\ & y \in \mathbb{R}^m, Z \succeq 0 \end{cases}$$

SDP for max-cut and ϑ -number

max-cut: sizes of interest *n* around 100, strengthened relaxation leads to more than 10 000 constraints. SDP for max-cut and ϑ -number

- max-cut: sizes of interest *n* around 100, strengthened relaxation leads to more than 10 000 constraints.
- →
 ∂-number: sizes of interest n ≥ 500, results in 100 000
 constraints.

SDP for max-cut and ϑ -number

- max-cut: sizes of interest *n* around 100, strengthened relaxation leads to more than 10 000 constraints.
- ∂-number: sizes of interest n ≥ 500, results in 100 000 constraints.
- \rightarrow need other algorithmic machinery than interior point methods.

```
assume m and n are large \longrightarrow avoid Cholesky factorization, matrix multiplication,...
```

idea: get rid of $Z \succeq 0$ by using eigenvalue arguments.

 \mathcal{A} has constant trace property if I is in the range of \mathcal{A}^{\top} , i.e., $\exists \mu$ such that $\mathcal{A}^{\top}(\mu) = I$.

 \mathcal{A} has constant trace property if I is in the range of \mathcal{A}^{\top} , i.e., $\exists \mu$ such that $\mathcal{A}^{\top}(\mu) = I$.

The constant trace property implies:

$$\mathcal{A}(X) = b, \mathcal{A}^{\top}(\mu) = I$$

 \mathcal{A} has constant trace property if I is in the range of \mathcal{A}^{\top} , i.e., $\exists \mu$ such that $\mathcal{A}^{\top}(\mu) = I$.

The constant trace property implies:

$$\begin{split} \mathcal{A}(X) &= b, \mathcal{A}^{\top}(\mu) = I \\ \implies \mathsf{trace}(X) &= \langle I, X \rangle = \langle \mathcal{A}^{\top}(\mu), X \rangle = \langle \mu, \mathcal{A}(X) \rangle = \mu^{\top}b =: a \end{split}$$

 \mathcal{A} has constant trace property if I is in the range of \mathcal{A}^{\top} , i.e., $\exists \mu$ such that $\mathcal{A}^{\top}(\mu) = I$.

The constant trace property implies:

$$\begin{split} \mathcal{A}(X) &= b, \mathcal{A}^{\top}(\mu) = I \\ \implies \mathsf{trace}(X) &= \langle I, X \rangle = \langle \mathcal{A}^{\top}(\mu), X \rangle = \langle \mu, \mathcal{A}(X) \rangle = \mu^{\top}b =: a \end{split}$$

constant trace property holds for many SDP derived from combinatorial optimization problems.

Reformulate dual as follows:

$$\min\{b^\top y \colon \mathcal{A}^\top(y) - \mathcal{C} = Z \succeq 0\}$$

Reformulate dual as follows:

$$\min\{b^\top y \colon \mathcal{A}^\top(y) - C = Z \succeq 0\}$$

Adding (redundant) primal constraint tr(X) = a (thus introducing new dual variable, say λ) and dual becomes:

$$\min\{b^{\top}y + a\lambda \colon \mathcal{A}^{\top}(y) - C + \lambda I = Z \succeq 0\}$$

Reformulate dual as follows:

$$\min\{b^\top y \colon \mathcal{A}^\top(y) - C = Z \succeq 0\}$$

Adding (redundant) primal constraint tr(X) = a (thus introducing new dual variable, say λ) and dual becomes:

$$\min\{b^{\top}y + a\lambda \colon \mathcal{A}^{\top}(y) - C + \lambda I = Z \succeq 0\}$$

 X^*, Z^* optimal $\implies X^*Z^* = 0$, hence Z^* is singular and $\lambda_{min}(Z^*) = 0$.

Reformulate dual as follows:

$$\min\{b^\top y \colon \mathcal{A}^\top(y) - C = Z \succeq 0\}$$

Adding (redundant) primal constraint tr(X) = a (thus introducing new dual variable, say λ) and dual becomes:

$$\min\{b^{\top}y + a\lambda \colon \mathcal{A}^{\top}(y) - C + \lambda I = Z \succeq 0\}$$

 X^*, Z^* optimal $\implies X^*Z^* = 0$, hence Z^* is singular and $\lambda_{min}(Z^*) = 0$.

 \longrightarrow used to compute dual variable λ explicitely

$$\lambda_{min}(Z^*) = 0 \iff \lambda_{max}(-Z^*) = 0$$

$$egin{aligned} \lambda_{min}(Z^*) &= 0 & \Longleftrightarrow & \lambda_{max}(-Z^*) &= 0 \ & \iff & \lambda_{max}(C - \mathcal{A}^{ op}(y^*) - \lambda^* I) &= 0 \end{aligned}$$

$$egin{aligned} \lambda_{min}(Z^*) &= 0 & \Longleftrightarrow & \lambda_{max}(-Z^*) = 0 \ & \Leftrightarrow & \lambda_{max}(C - \mathcal{A}^{ op}(y^*) - \lambda^* I) = 0 \ & \Leftrightarrow & \lambda_{max}(C - \mathcal{A}^{ op}(y^*)) - \lambda^* = 0 \end{aligned}$$

$$egin{aligned} \lambda_{min}(Z^*) &= 0 & \Longleftrightarrow & \lambda_{max}(-Z^*) = 0 \ & \Leftrightarrow & \lambda_{max}(C - \mathcal{A}^{ op}(y^*) - \lambda^* I) = 0 \ & \Leftrightarrow & \lambda_{max}(C - \mathcal{A}^{ op}(y^*)) - \lambda^* = 0 \ & \Leftrightarrow & \lambda^* = \lambda_{max}(C - \mathcal{A}^{ op}(y^*)) \end{aligned}$$

$$egin{aligned} \lambda_{min}(Z^*) &= 0 & \Longleftrightarrow & \lambda_{max}(-Z^*) = 0 \ & \Leftrightarrow & \lambda_{max}(C - \mathcal{A}^{ op}(y^*) - \lambda^* I) = 0 \ & \Leftrightarrow & \lambda_{max}(C - \mathcal{A}^{ op}(y^*)) - \lambda^* = 0 \ & \Leftrightarrow & \lambda^* = \lambda_{max}(C - \mathcal{A}^{ op}(y^*)) \end{aligned}$$

rewrite the dual:

$$\min\{b^{ op}y + \lambda_{\max}(\mathcal{C} - \mathcal{A}^{ op}(y)) \colon y \in \mathbb{R}^m\}$$

 \rightarrow non-smooth unconstrained convex problem in y.

$$egin{aligned} \lambda_{min}(Z^*) &= 0 & \Longleftrightarrow & \lambda_{max}(-Z^*) = 0 \ & \Leftrightarrow & \lambda_{max}(C - \mathcal{A}^{ op}(y^*) - \lambda^* I) = 0 \ & \Leftrightarrow & \lambda_{max}(C - \mathcal{A}^{ op}(y^*)) - \lambda^* = 0 \ & \Leftrightarrow & \lambda^* = \lambda_{max}(C - \mathcal{A}^{ op}(y^*)) \end{aligned}$$

rewrite the dual:

$$\min\{b^{ op}y + \lambda_{\max}(\mathcal{C} - \mathcal{A}^{ op}(y)) \colon y \in \mathbb{R}^m\}$$

 \rightarrow non-smooth unconstrained convex problem in y.

note: evaluating $f(y) = b^{\top}y + \lambda_{\max}(C - A^{\top}(y))$ amounts in computing largest eigenvalue of $C - A^{\top}(y)$

$$egin{aligned} \lambda_{min}(Z^*) &= 0 & \Longleftrightarrow & \lambda_{max}(-Z^*) = 0 \ & \Leftrightarrow & \lambda_{max}(C - \mathcal{A}^{ op}(y^*) - \lambda^* I) = 0 \ & \Leftrightarrow & \lambda_{max}(C - \mathcal{A}^{ op}(y^*)) - \lambda^* = 0 \ & \Leftrightarrow & \lambda^* = \lambda_{max}(C - \mathcal{A}^{ op}(y^*)) \end{aligned}$$

rewrite the dual:

$$\min\{b^ op y + \lambda_{\mathsf{max}}(\mathcal{C} - \mathcal{A}^ op(y)) \colon y \in \mathbb{R}^m\}$$

 \rightarrow non-smooth unconstrained convex problem in y.

note: evaluating $f(y) = b^{\top}y + \lambda_{\max}(C - A^{\top}(y))$ amounts in computing largest eigenvalue of $C - A^{\top}(y)$

 \longrightarrow can be done by iterative methods even for very large (sparse) matrices.

$$\lambda_{\max}(X) = \max\{\langle X, W \rangle \colon \mathsf{trace}(W) = 1, W \succeq 0\}$$

$$\lambda_{\sf max}(X) = {\sf max}\{\langle X, W
angle$$
: trace $(W) = 1, W \succeq 0\}$

Define

$$\mathcal{L}(W,y) := \langle \mathcal{C} - \mathcal{A}^{ op}(y), W
angle + b^{ op}y$$

hence,

$$f(y) = \max\{\mathcal{L}(W, y) \colon \operatorname{trace}(W) = 1, W \succeq 0\}$$

$$\lambda_{\sf max}(X) = {\sf max}\{\langle X, W
angle \colon {\sf trace}(W) = 1, W \succeq {\sf 0}\}$$

Define

$$\mathcal{L}(W,y) := \langle \mathcal{C} - \mathcal{A}^{ op}(y), W
angle + b^{ op}y$$

hence,

$$f(y) = \max\{\mathcal{L}(W, y) \colon \operatorname{trace}(W) = 1, W \succeq 0\}$$

two ingredients:

• minorant for f(y)

$$\lambda_{\mathsf{max}}(X) = \mathsf{max}\{\langle X, W
angle \colon \mathsf{trace}(W) = 1, W \succeq \mathsf{0}\}$$

Define

$$\mathcal{L}(W, y) := \langle \mathcal{C} - \mathcal{A}^{\top}(y), W \rangle + b^{\top} y$$

hence,

$$f(y) = \max\{\mathcal{L}(W, y) \colon \mathsf{trace}(W) = 1, W \succeq 0\}$$

two ingredients:

- minorant for f(y)
- proximal point approach

Idea 1: Minorant for f(y)

Idea 1: Minorant for f(y)

Fix some $m \times k$ matrix P. $k \ge 1$ can be chosen arbitrarily [choice of P will be explained later]

Idea 1: Minorant for f(y)

Fix some $m \times k$ matrix P. $k \ge 1$ can be chosen arbitrarily [choice of P will be explained later]

replace feasible region $\{W : trace(W) = 1, W \succeq 0\}$ by computational more practical subset

$$\mathcal{W} = \{ \mathcal{W} \colon \mathcal{W} = \mathcal{P} \mathcal{V} \mathcal{P}^{ op}, \mathsf{trace}(\mathcal{V}) = 1, \mathcal{V} \succeq 0 \}$$

with new $k \times k$ matrix variable V.

Idea 1: Minorant for f(y)

Fix some $m \times k$ matrix P. $k \ge 1$ can be chosen arbitrarily [choice of P will be explained later]

replace feasible region $\{W: trace(W) = 1, W \succeq 0\}$ by computational more practical subset

$$\mathcal{W} = \{ \mathcal{W} \colon \mathcal{W} = \mathcal{P} \mathcal{V} \mathcal{P}^{ op}, \mathsf{trace}(\mathcal{V}) = 1, \mathcal{V} \succeq 0 \}$$

with new $k \times k$ matrix variable V.

$$\hat{f}(y) := \max\{\mathcal{L}(W, y) \colon W = PVP^{ op}, ext{trace}(V) = 1, V \succeq 0\}$$

Idea 1: Minorant for f(y)

Fix some $m \times k$ matrix P. $k \ge 1$ can be chosen arbitrarily [choice of P will be explained later]

replace feasible region $\{W: trace(W) = 1, W \succeq 0\}$ by computational more practical subset

$$\mathcal{W} = \{ \mathcal{W} \colon \mathcal{W} = \mathcal{P} \mathcal{V} \mathcal{P}^{ op}, \mathsf{trace}(\mathcal{V}) = 1, \mathcal{V} \succeq \mathsf{0} \}$$

with new $k \times k$ matrix variable V.

$$\hat{f}(y) := \max\{\mathcal{L}(W, y) \colon W = \mathsf{PVP}^{ op}, \mathsf{trace}(V) = 1, V \succeq 0\} \le f(y)$$

Idea 2: Proximal point approach

The function \hat{f} (depending on *P*) will be a good approximation to f(y) only in some neighbourhood of the current iterate \hat{y} .

Idea 2: Proximal point approach

The function \hat{f} (depending on *P*) will be a good approximation to f(y) only in some neighbourhood of the current iterate \hat{y} . \longrightarrow penalize displacement by adding $||y - \hat{y}||^2$.

Idea 2: Proximal point approach

The function \hat{f} (depending on P) will be a good approximation to f(y) only in some neighbourhood of the current iterate \hat{y} . \longrightarrow penalize displacement by adding $||y - \hat{y}||^2$.

Instead of minimizing f(y) we

$$\min \hat{f}(y) + \frac{u}{2} \|y - \hat{y}\|^2$$

Idea 2: Proximal point approach

The function \hat{f} (depending on P) will be a good approximation to f(y) only in some neighbourhood of the current iterate \hat{y} . \longrightarrow penalize displacement by adding $||y - \hat{y}||^2$.

Instead of minimizing f(y) we

$$\min \hat{f}(y) + \frac{u}{2} \|y - \hat{y}\|^2$$

This is a strictly convex function, if u > 0 is fixed.

substituting the definition of \hat{f} ...

$$\min_{y\in\mathbb{R}^m}\hat{f}(y)+\frac{u}{2}\|y-\hat{y}\|^2=$$

$$\min_{y\in\mathbb{R}^m} \hat{f}(y) + rac{u}{2} \|y - \hat{y}\|^2 = \ = \min_{y\in\mathbb{R}^m} \max_{W\in\mathcal{W}} \mathcal{L}(W,y) + rac{u}{2} \|y - \hat{y}\|^2 = \$$

$$\begin{split} \min_{y \in \mathbb{R}^m} \hat{f}(y) &+ \frac{u}{2} \|y - \hat{y}\|^2 = \\ &= \min_{y \in \mathbb{R}^m} \max_{W \in \mathcal{W}} \mathcal{L}(W, y) + \frac{u}{2} \|y - \hat{y}\|^2 = \\ &= \min_{y \in \mathbb{R}^m} \max_{W \in \mathcal{W}} \langle C - \mathcal{A}^\top(y), W \rangle + b^\top y + \frac{u}{2} \|y - \hat{y}\|^2 = \end{split}$$

$$\begin{split} \min_{y \in \mathbb{R}^m} \hat{f}(y) &+ \frac{u}{2} \|y - \hat{y}\|^2 = \\ &= \min_{y \in \mathbb{R}^m} \max_{W \in \mathcal{W}} \mathcal{L}(W, y) + \frac{u}{2} \|y - \hat{y}\|^2 = \\ &= \min_{y \in \mathbb{R}^m} \max_{W \in \mathcal{W}} \langle \mathcal{C} - \mathcal{A}^\top(y), W \rangle + b^\top y + \frac{u}{2} \|y - \hat{y}\|^2 = \\ &= \max_{W \in \mathcal{W}} \{ \langle \mathcal{C} - \mathcal{A}^\top(y), W \rangle + b^\top y + \frac{u}{2} \|y - \hat{y}\|^2 : \\ &= y = \hat{y} + \frac{1}{u} (\mathcal{A}(W) - b) \} = \end{split}$$

$$\begin{split} \min_{y \in \mathbb{R}^{m}} \hat{f}(y) &+ \frac{u}{2} \|y - \hat{y}\|^{2} = \\ &= \min_{y \in \mathbb{R}^{m}} \max_{W \in \mathcal{W}} \mathcal{L}(W, y) + \frac{u}{2} \|y - \hat{y}\|^{2} = \\ &= \min_{y \in \mathbb{R}^{m}} \max_{W \in \mathcal{W}} \langle C - \mathcal{A}^{\top}(y), W \rangle + b^{\top}y + \frac{u}{2} \|y - \hat{y}\|^{2} = \\ &= \max_{W \in \mathcal{W}} \{ \langle C - \mathcal{A}^{\top}(y), W \rangle + b^{\top}y + \frac{u}{2} \|y - \hat{y}\|^{2} : \\ &\quad y = \hat{y} + \frac{1}{u} (\mathcal{A}(W) - b) \} = \\ &= \max_{W \in \mathcal{W}} \{ \langle C - \mathcal{A}^{\top}(\hat{y}), W \rangle + b^{\top} \hat{y} - \frac{1}{2u} \|\mathcal{A}(W) - b\|^{2} \end{split}$$

$$\begin{split} \min_{y \in \mathbb{R}^{m}} \hat{f}(y) &+ \frac{u}{2} \| y - \hat{y} \|^{2} = \\ &= \min_{y \in \mathbb{R}^{m}} \max_{W \in \mathcal{W}} \mathcal{L}(W, y) + \frac{u}{2} \| y - \hat{y} \|^{2} = \\ &= \min_{y \in \mathbb{R}^{m}} \max_{W \in \mathcal{W}} \langle C - \mathcal{A}^{\top}(y), W \rangle + b^{\top} y + \frac{u}{2} \| y - \hat{y} \|^{2} = \\ &= \max_{W \in \mathcal{W}} \{ \langle C - \mathcal{A}^{\top}(y), W \rangle + b^{\top} y + \frac{u}{2} \| y - \hat{y} \|^{2} : \\ &\quad y = \hat{y} + \frac{1}{u} (\mathcal{A}(W) - b) \} = \\ &= \max_{W \in \mathcal{W}} \{ \langle C - \mathcal{A}^{\top}(\hat{y}), W \rangle + b^{\top} \hat{y} - \frac{1}{2u} \| \mathcal{A}(W) - b \|^{2} \end{split}$$

quadratic SDP in the $k \times k$ matrix variable V, since $W = PVP^{\top}$. k is user defined and can be small, in particular, it is independent of n.

Solve maximization problem (using interior point methods) to obtain V and thus W = PVP[⊤]

•
$$y_{new} = \hat{y} + \frac{1}{u}(\mathcal{A}(W) - b)$$

Solve maximization problem (using interior point methods) to obtain V and thus W = PVP[⊤]

•
$$y_{new} = \hat{y} + \frac{1}{u}(\mathcal{A}(W) - b)$$

Solve maximization problem (using interior point methods) to obtain V and thus W = PVP[⊤]

•
$$y_{new} = \hat{y} + \frac{1}{u}(\mathcal{A}(W) - b)$$

What is P?

Having point y_{new} , evaluation $f(y_{new})$ (sparse eigenvalue computation) produces also an eigenvector v to λ_{max} .

Solve maximization problem (using interior point methods) to obtain V and thus W = PVP[⊤]

•
$$y_{new} = \hat{y} + \frac{1}{u}(\mathcal{A}(W) - b)$$

What is P?

Having point y_{new} , evaluation $f(y_{new})$ (sparse eigenvalue computation) produces also an eigenvector v to λ_{max} .

 \rightarrow eigenvector v is added as new column to P, and P is purged by removing unnecessary other columns.

computational effort:

- solve quadratic SDP of size k
- compute λ_{\max} of matrix of order n

computational effort:

- solve quadratic SDP of size k
- compute λ_{\max} of matrix of order *n*

software SBmethod a C++ implementation of the spectral bundle method of [Helmberg and Rendl 00; Helmberg and Kiwiel 99] no longer supported, but now there is the ConicBundle callable library instead; available at https:

//www-user.tu-chemnitz.de/~helmberg/ConicBundle/

example: consider again the basic max-cut relaxation $\max\{\langle L,X\rangle\colon {\rm diag}(X)=e,X\succeq 0\}$

Now 20 000 $\leq n \leq$ 50 000, sparse graphs.

п	upper-bnd	cut	time (secs)
20,000	143.3	131.3	330
20,000	261.9	244.8	536
20,000	598.1	571.1	1255
30,000	214.9	197.2	753
30,000	393.3	367.4	990
30,000	897.9	857.3	2330
40,000	286.9	262.7	1180
40,000	524.6	489.8	1650
50,000	358.9	328.5	1800

spectral bundle method summarized

- using eigenvalue optimization and classical methods from convex analysis
- general tool for solving SDP having matrices of large dimension
- convergence is slow, once close to optimum

Algorithms for solving semidefinite programs

- interior point methods
- spectral bundle methods
- bundle method
- projection methods

We would like to compute

$$z^* = \max\{\langle C, X \rangle \colon \mathcal{A}(X) = a, \ \mathcal{B}(X) = b, \ X \succeq 0\}$$

Optimizing over $\mathcal{A}(X) = a, X \succeq 0$ without $\mathcal{B}(X) = b$ is "easy", but inclusion of $\mathcal{B}(X) = b$ makes SDP difficult.

We would like to compute

$$z^* = \max\{\langle C, X \rangle \colon \mathcal{A}(X) = a, \ \mathcal{B}(X) = b, \ X \succeq 0\}$$

Optimizing over $\mathcal{A}(X) = a, X \succeq 0$ without $\mathcal{B}(X) = b$ is "easy", but inclusion of $\mathcal{B}(X) = b$ makes SDP difficult. partial Lagrangian dual (y dual to $\mathcal{B}(X) = b$):

$$\mathcal{L}(X; y) = \langle C, X \rangle + y^{\top}(b - \mathcal{B}(X))$$

dual functional:

$$f(y) = \max_{\mathcal{A}(X)=a, X \succeq 0} \mathcal{L}(X; y)$$

We would like to compute

$$z^* = \max\{\langle C, X \rangle \colon \mathcal{A}(X) = a, \ \mathcal{B}(X) = b, \ X \succeq 0\}$$

Optimizing over $\mathcal{A}(X) = a, X \succeq 0$ without $\mathcal{B}(X) = b$ is "easy", but inclusion of $\mathcal{B}(X) = b$ makes SDP difficult. partial Lagrangian dual (y dual to $\mathcal{B}(X) = b$):

$$\mathcal{L}(X; y) = \langle C, X \rangle + y^{\top}(b - \mathcal{B}(X))$$

dual functional:

$$f(y) = \max_{\mathcal{A}(X)=a, X \succeq 0} \mathcal{L}(X; y)$$

and thus

$$z^* = \min_{y \in \mathbb{R}^m} f(y)$$

$$z^* = \min_{y \in \mathbb{R}^m} f(y)$$

with

$$f(y) = \max_{\mathcal{A}(X)=a,X \succeq 0} \langle C, X \rangle + y^{\top} (b - \mathcal{B}(X))$$

$$z^* = \min_{y \in \mathbb{R}^m} f(y)$$

with

$$f(y) = \max_{\mathcal{A}(X)=a,X\succeq 0} \langle C,X\rangle + y^{\top}(b-\mathcal{B}(X))$$
$$= b^{\top}y + \max_{\mathcal{A}(X)=a,X\succeq 0} \langle C-\mathcal{B}^{\top}(y),X\rangle$$

$$z^* = \min_{y \in \mathbb{R}^m} f(y)$$

with

$$f(y) = \max_{\mathcal{A}(X)=a,X\succeq 0} \langle C,X \rangle + y^{\top}(b-\mathcal{B}(X))$$

= $b^{\top}y + \max_{\mathcal{A}(X)=a,X\succeq 0} \langle C-\mathcal{B}^{\top}(y),X \rangle$

evaluating f(y) amounts in solving an SDP.

$$z^* = \min_{y \in \mathbb{R}^m} f(y)$$

with

$$\begin{split} f(y) &= \max_{\mathcal{A}(X)=a,X\succeq 0} \langle C,X\rangle + y^\top (b-\mathcal{B}(X)) \\ &= b^\top y + \max_{\mathcal{A}(X)=a,X\succeq 0} \langle C-\mathcal{B}^\top (y),X\rangle \end{split}$$

evaluating f(y) amounts in solving an SDP.

basic assumption: we can evaluate f(y) easily, yielding also a maximizer X^* and $g^* = b - \mathcal{B}(X^*)$.

using
$$g^* = b - \mathcal{B}(X^*)$$
 if X^* is the optimizer for given \bar{y} :
 $f(\bar{y}) = b^\top \bar{y} + \langle C - \mathcal{B}^\top(\bar{y}), X^* \rangle =$

using
$$g^* = b - \mathcal{B}(X^*)$$
 if X^* is the optimizer for given \bar{y} :

$$f(\bar{y}) = b^\top \bar{y} + \langle C - \mathcal{B}^\top(\bar{y}), X^* \rangle =$$

$$= \langle b - \mathcal{B}^\top(X^*), \bar{y} \rangle + \langle C, X^* \rangle = \langle g^*, \bar{y} \rangle + \langle C, X^* \rangle$$

using
$$g^* = b - \mathcal{B}(X^*)$$
 if X^* is the optimizer for given \bar{y} :

$$f(\bar{y}) = b^\top \bar{y} + \langle C - \mathcal{B}^\top(\bar{y}), X^* \rangle =$$

$$= \langle b - \mathcal{B}^\top(X^*), \bar{y} \rangle + \langle C, X^* \rangle = \langle g^*, \bar{y} \rangle + \langle C, X^* \rangle$$

for any y we have

$$f(y) \geq b^{\top}y + \langle C - B^{\top}(y), X^* \rangle =$$

using
$$g^* = b - \mathcal{B}(X^*)$$
 if X^* is the optimizer for given \bar{y} :

$$f(\bar{y}) = b^\top \bar{y} + \langle C - \mathcal{B}^\top(\bar{y}), X^* \rangle =$$

$$= \langle b - \mathcal{B}^\top(X^*), \bar{y} \rangle + \langle C, X^* \rangle = \langle g^*, \bar{y} \rangle + \langle C, X^* \rangle$$

for any y we have

$$\begin{split} f(y) &\geq b^\top y + \langle C - \mathcal{B}^\top(y), X^* \rangle = \\ &= \langle b - \mathcal{B}(X^*), y \rangle + \langle C, X^* \rangle = \langle g^*, y \rangle + \langle C, X^* \rangle \end{split}$$

using
$$g^* = b - \mathcal{B}(X^*)$$
 if X^* is the optimizer for given \bar{y} :

$$f(\bar{y}) = b^\top \bar{y} + \langle C - \mathcal{B}^\top(\bar{y}), X^* \rangle =$$

$$= \langle b - \mathcal{B}^\top(X^*), \bar{y} \rangle + \langle C, X^* \rangle = \langle g^*, \bar{y} \rangle + \langle C, X^* \rangle$$

for any y we have

$$\begin{aligned} f(y) &\geq b^{\top}y + \langle C - \mathcal{B}^{\top}(y), X^* \rangle = \\ &= \langle b - \mathcal{B}(X^*), y \rangle + \langle C, X^* \rangle = \langle g^*, y \rangle + \langle C, X^* \rangle \end{aligned}$$

combining, we get:

$$f(y) - f(\bar{y}) \ge \langle g^*, y \rangle + \langle C, X^* \rangle - \langle g^*, \bar{y} \rangle - \langle C, X^* \rangle$$

i.e.,

using
$$g^* = b - \mathcal{B}(X^*)$$
 if X^* is the optimizer for given \bar{y} :

$$f(\bar{y}) = b^\top \bar{y} + \langle C - \mathcal{B}^\top(\bar{y}), X^* \rangle =$$

$$= \langle b - \mathcal{B}^\top(X^*), \bar{y} \rangle + \langle C, X^* \rangle = \langle g^*, \bar{y} \rangle + \langle C, X^* \rangle$$

for any y we have

$$\begin{aligned} f(y) &\geq b^{\top}y + \langle C - \mathcal{B}^{\top}(y), X^* \rangle = \\ &= \langle b - \mathcal{B}(X^*), y \rangle + \langle C, X^* \rangle = \langle g^*, y \rangle + \langle C, X^* \rangle \end{aligned}$$

combining, we get:

$$f(y) - f(\bar{y}) \ge \langle g^*, y \rangle + \langle C, X^* \rangle - \langle g^*, \bar{y} \rangle - \langle C, X^* \rangle$$

i.e.,

$$f(y) \geq f(ar{y}) + \langle g^*, y - ar{y}
angle \qquad orall y$$

hence $g^* = b - \mathcal{B}(X^*)$ is subgradient.

since

$$z^* = \min_{y \in \mathbb{R}^m} f(y)$$

since

$$z^* = \min_{y \in \mathbb{R}^m} f(y) \le f(\tilde{y}) \quad \forall \tilde{y} \in \mathbb{R}^m$$

any $ilde{y} \in \mathbb{R}^m$ provides upper bound on z^*

since

$$z^* = \min_{y \in \mathbb{R}^m} f(y) \le f(\tilde{y}) \quad \forall \tilde{y} \in \mathbb{R}^m$$

any $\tilde{y} \in \mathbb{R}^m$ provides upper bound on z^* \longrightarrow try to find tight upper bound (i.e., approximate minimizer of f(y)) by using bundle methods.

two ingredients:

- work with a "bundle" of X_i's and maximize over conv{X₁,...,X_k} instead of over {A(X) = a, X ≥ 0}
- ▶ penalize displacement from current iterate, i.e., add penalty term $\frac{1}{2t} \|y \hat{y}\|^2$

two ingredients:

- work with a "bundle" of X_i's and maximize over conv{X₁,...,X_k} instead of over {A(X) = a, X ≥ 0}
- ▶ penalize displacement from current iterate, i.e., add penalty term $\frac{1}{2t} \|y \hat{y}\|^2$

$$\begin{split} \min_{y} \hat{f}(y) + \frac{1}{2t} \|y - \hat{y}\|^2 \\ \hat{f}(y) &= \max_{X \in \text{conv}\{X_1, \dots, X_k\}} \mathcal{L}(X; y) \end{split}$$

iterative procedure:

solve approximately

$$\min_{\gamma\geq 0}\hat{f}(y) + \frac{1}{2t}||y - \hat{y}||^2$$

where

$$\hat{f}(y) = \max\{\mathcal{L}(X;y) \colon X \in \mathsf{conv}\{X_1,\ldots,X_k\}$$

giving y

iterative procedure:

solve approximately

$$\min_{\gamma\geq 0}\hat{f}(y) + \frac{1}{2t}||y - \hat{y}||^2$$

where

$$\hat{f}(y) = \max\{\mathcal{L}(X;y) \colon X \in \mathsf{conv}\{X_1,\ldots,X_k\}$$

giving y

evaluate

$$f(y) = b^{\top}y + \max\{\langle C - \mathcal{B}^{\top}(y), X \rangle \colon \mathcal{A}(X) = a, \ X \succeq 0\}$$

iterative procedure:

solve approximately

$$\min_{\gamma\geq 0}\hat{f}(y) + \frac{1}{2t}||y - \hat{y}||^2$$

where

$$\hat{f}(y) = \max\{\mathcal{L}(X;y) \colon X \in \mathsf{conv}\{X_1,\ldots,X_k\}$$

giving y

evaluate

$$f(y) = b^{\top}y + \max\{\langle C - \mathcal{B}^{\top}(y), X \rangle \colon \mathcal{A}(X) = a, \ X \succeq 0\}$$

computational effort in each iteration:

- solve a convex quadratic program in k variables
- evaluate $f(\hat{y})$ to yield new \hat{X} and a subgradient \hat{g}

example: solving the max-cut relaxation strengthened by triangle-inequalities:

$$\max\{\langle L, X \rangle \colon \operatorname{diag}(X) = e, \mathcal{M}(X) \leq -e, X \succeq 0\}$$

bundle method

example: solving the max-cut relaxation strengthened by triangle-inequalities:

$$\max\{\langle L, X \rangle \colon \operatorname{diag}(X) = e, \mathcal{M}(X) \leq -e, X \succeq 0\}$$

dualize the triangle-inequalities $\mathcal{M}(X) \leq -e$, evaluating f(y) is then solving

$$\max\{\langle L - \mathcal{M}^{\top}(y), X \rangle : \operatorname{diag}(X) = e, X \succeq 0\}$$

bundle method

example: solving the max-cut relaxation strengthened by triangle-inequalities:

$$\max\{\langle L, X \rangle \colon \operatorname{diag}(X) = e, \mathcal{M}(X) \leq -e, X \succeq 0\}$$

dualize the triangle-inequalities $\mathcal{M}(X) \leq -e$, evaluating f(y) is then solving

$$\max\{\langle L - \mathcal{M}^{\top}(y), X \rangle : \operatorname{diag}(X) = e, X \succeq 0\}$$

SDP with matrix dimension n and only n linear constraints.

bundle method

SDP relaxation for max-cut; triangle inequalities are dualized. 50 bundle iterations for n = 800, and 30 for n = 2000.

graph	п	initial gap (%)	final (%)	time (secs)
G6	800	22.29	18.15	43.11
G11	800	11.56	1.54	60.20
G14	800	4.51	2.84	59.68
G18	800	18.38	7.96	69.19
G22	2000	6.34	5.66	278.06
G27	2000	25.77	22.94	406.66
G39	2000	21.27	12.63	533.36

see [Fischer, Gruber, Rendl, Sotirov, 06]

software: ConicBundle C++ library of Ch. Helmberg, available at
https:
//www-user.tu-chemnitz.de/~helmberg/ConicBundle/

bundle method summarized

- in combination with interior point methods is a good tool to approximate SDPs with a huge number of constraints
- the number of function evaluations to reach good approximations is surprisingly small
- getting to the "real" optimum is hard

algorithms for solving semidefinite programs

- interior point methods
- spectral bundle method
- bundle methods
- projection methods

min f(x) such that $x \in \mathcal{X}$, h(x) = 0

min f(x) such that $x \in \mathcal{X}$, h(x) = 0

 $f : \mathbb{R}^n \mapsto \mathbb{R}, h : \mathbb{R}^n \mapsto \mathbb{R}^m$ sufficiently smooth functions, $\mathcal{X} \subseteq \mathbb{R}^n$ nonempty closed convex set of simple structure

min f(x) such that $x \in \mathcal{X}$, h(x) = 0

 $f : \mathbb{R}^n \mapsto \mathbb{R}, h : \mathbb{R}^n \mapsto \mathbb{R}^m$ sufficiently smooth functions, $\mathcal{X} \subseteq \mathbb{R}^n$ nonempty closed convex set of simple structure

$$\mathcal{L}_{\sigma}(x,y) := f(x) + y^{\top}h(x) + \frac{\sigma}{2} \|h(x)\|^2$$

min f(x) such that $x \in \mathcal{X}$, h(x) = 0

 $f : \mathbb{R}^n \mapsto \mathbb{R}, h : \mathbb{R}^n \mapsto \mathbb{R}^m$ sufficiently smooth functions, $\mathcal{X} \subseteq \mathbb{R}^n$ nonempty closed convex set of simple structure

$$\mathcal{L}_{\sigma}(x,y) := f(x) + y^{\top}h(x) + \frac{\sigma}{2} \|h(x)\|^2$$

repeat until convergence (a) Keep y fixed: solve $\min_x \mathcal{L}_{\sigma}(x, y)$ to get x (b) update y: $y \leftarrow y + \sigma h(x)$ (c) update σ

Original version: Powell, Hestenes, 1969

(**DSDP**) min
$$b^{\top}y$$
 s.t. $\mathcal{A}^{\top}(y) - C = Z, Z \succeq 0$

(**DSDP**) min
$$b^{\top}y$$
 s.t. $\mathcal{A}^{\top}(y) - C = Z, Z \succeq 0$

$$\mathcal{L}_{\sigma}(y, Z; X) = b^{ op} y + \langle X, Z + C - \mathcal{A}^{ op}(y)
angle + rac{\sigma}{2} \|Z + C - \mathcal{A}^{ op}(y)\|^2$$

inner minimization

$$\min_{y,Z\succeq 0}\mathcal{L}_{\sigma_k}(y,Z;X)$$

inner minimization

$$\min_{y, Z \succeq 0} \mathcal{L}_{\sigma_k}(y, \mathcal{Z}; X)$$

Define $\mathcal{W}(y) := \mathcal{A}^{ op}(y) - \mathcal{C} - rac{1}{\sigma} X$

.

- ...

inner minimization

$$\min_{y, Z \succeq 0} \mathcal{L}_{\sigma_k}(y, Z; X)$$

Define $\mathcal{W}(y) := \mathcal{A}^\top(y) - C - \frac{1}{\sigma}X$
$$\mathcal{L}_{\sigma}(y, Z; X) = b^\top y + \langle X, Z + C - \mathcal{A}^\top(y) \rangle + \frac{\sigma}{2} \|Z + C - \mathcal{A}^\top(y)\|^2$$
$$= b^\top y + \frac{1}{\sigma} \|Z - \mathcal{W}(y)\|^2 - \frac{1}{2\sigma} \|X\|^2$$

inner minimization

$$\begin{split} \min_{y, Z \succeq 0} \mathcal{L}_{\sigma_k}(y, Z; X) \\ \text{Define } \mathcal{W}(y) &:= \mathcal{A}^\top(y) - C - \frac{1}{\sigma} X \\ \mathcal{L}_{\sigma}(y, Z; X) &= b^\top y + \langle X, Z + C - \mathcal{A}^\top(y) \rangle + \frac{\sigma}{2} \|Z + C - \mathcal{A}^\top(y)\|^2 \\ &= b^\top y + \frac{1}{\sigma} \|Z - \mathcal{W}(y)\|^2 - \frac{1}{2\sigma} \|X\|^2 \end{split}$$

$$\min_{y,Z\succeq 0} b^\top y + \frac{1}{\sigma} \|Z - \mathcal{W}(y)\|^2$$

inner minimization: optimality conditions

$$\mathcal{L}_{\sigma}(y, Z; V) = b^{ op} y + rac{1}{\sigma} \| Z - \mathcal{W}(y) \|^2 - \langle V, Z
angle$$

inner minimization: optimality conditions

$$\mathcal{L}_{\sigma}(y, Z; V) = b^{ op} y + rac{1}{\sigma} \| Z - \mathcal{W}(y) \|^2 - \langle V, Z
angle$$

 $\nabla_{\mathbf{y}}\mathcal{L} = \mathbf{0} \Rightarrow \sigma \mathcal{A}(\mathcal{A}^{\top}(\mathbf{y})) = \sigma \mathcal{A}(\mathbf{Z} + \mathbf{C}) + (\mathcal{A}(\mathbf{X}) - \mathbf{b})$

inner minimization: optimality conditions

$$\mathcal{L}_{\sigma}(y,Z;V) = b^{ op}y + rac{1}{\sigma} \|Z - \mathcal{W}(y)\|^2 - \langle V,Z
angle$$

 $\nabla_{\mathbf{y}}\mathcal{L} = \mathbf{0} \Rightarrow \sigma \mathcal{A}(\mathcal{A}^{\top}(\mathbf{y})) = \sigma \mathcal{A}(\mathbf{Z} + \mathbf{C}) + (\mathcal{A}(\mathbf{X}) - \mathbf{b})$

$$\nabla_Z \mathcal{L} = 0 \Rightarrow V = \sigma(Z - \mathcal{W}(y))$$

inner minimization: optimality conditions

$$\mathcal{L}_{\sigma}(y, Z; V) = b^{ op} y + rac{1}{\sigma} \| Z - \mathcal{W}(y) \|^2 - \langle V, Z
angle$$

 $\nabla_{\mathbf{y}}\mathcal{L} = \mathbf{0} \Rightarrow \sigma \mathcal{A}(\mathcal{A}^{\top}(\mathbf{y})) = \sigma \mathcal{A}(\mathbf{Z} + \mathbf{C}) + (\mathcal{A}(\mathbf{X}) - \mathbf{b})$

$$\nabla_{Z}\mathcal{L} = 0 \Rightarrow V = \sigma(Z - \mathcal{W}(y))$$

 $V \succeq 0, Z \succeq 0, VZ = 0.$

solve coordinatewise:

keep Z (and X) constant, y is given by the unconstrained minimization

$$\sigma \mathcal{A}(\mathcal{A}^{\top}(y)) = \sigma \mathcal{A}(Z+C) + (\mathcal{A}(X) - b)$$

solve coordinatewise:

keep Z (and X) constant, y is given by the unconstrained minimization

$$\sigma \mathcal{A}(\mathcal{A}^{\top}(y)) = \sigma \mathcal{A}(Z+C) + (\mathcal{A}(X) - b)$$

keep y (and X) constant, Z is given by the projection onto the positive semidefinite cone

$$\min_{Z\succeq 0} \|Z - \mathcal{W}(y)\|^2$$

solve coordinatewise:

keep Z (and X) constant, y is given by the unconstrained minimization

$$\sigma \mathcal{A}(\mathcal{A}^{\top}(y)) = \sigma \mathcal{A}(Z+C) + (\mathcal{A}(X) - b)$$

keep y (and X) constant, Z is given by the projection onto the positive semidefinite cone

$$\min_{Z\succeq 0} \|Z - \mathcal{W}(y)\|^2$$

 $Z = \mathcal{W}(y)_+$

boundary point method

Initialization: k = 0, select $\sigma_k > 0$, $X_k \succeq 0, Z_k \succeq 0$

boundary point method Initialization: k = 0, select $\sigma_k > 0$, $X_k \succeq 0$, $Z_k \succeq 0$ repeat until convergence (a) Keep X_k fixed. repeat until convergence

boundary point method Initialization: k = 0, select $\sigma_k > 0$, $X_k \succeq 0, Z_k \succeq 0$ repeat until convergence (a) Keep X_k fixed. repeat until convergence - solve $\mathcal{A}(\mathcal{A}^{\top}(y)) = rhs$ giving y_k

boundary point method Initialization: k = 0, select $\sigma_k > 0$, $X_k \succeq 0$, $Z_k \succeq 0$ repeat until convergence (a) Keep X_k fixed. repeat until convergence - solve $\mathcal{A}(\mathcal{A}^{\top}(y)) = rhs$ giving y_k - compute $Z_k = \mathcal{W}(y_k)_+$

boundary point method Initialization: k = 0, select $\sigma_k > 0$, $X_k \succeq 0, Z_k \succeq 0$ repeat until convergence (a) Keep X_k fixed. repeat until convergence - solve $\mathcal{A}(\mathcal{A}^{\top}(y)) = rhs$ giving y_k - compute $Z_k = \mathcal{W}(y_k)_+$ (b) Update $X: X_{k+1} = -\sigma \mathcal{W}(y_k)_-$

boundary point method Initialization: k = 0, select $\sigma_k > 0$, $X_k \succeq 0, Z_k \succeq 0$ repeat until convergence (a) Keep X_k fixed. repeat until convergence - solve $\mathcal{A}(\mathcal{A}^{\top}(y)) = rhs$ giving y_k - compute $Z_k = \mathcal{W}(y_k)_+$ (b) Update $X: X_{k+1} = -\sigma \mathcal{W}(y_k)_-$ (c) Select $\sigma_{k+1} \ge \sigma_k$.

boundary point method Initialization: k = 0, select $\sigma_k > 0$, $X_k \succeq 0, Z_k \succeq 0$ repeat until convergence (a) Keep X_k fixed. repeat until convergence - solve $\mathcal{A}(\mathcal{A}^{\top}(y)) = rhs$ giving y_k - compute $Z_k = \mathcal{W}(y_k)_+$ (b) Update $X: X_{k+1} = -\sigma \mathcal{W}(y_k)_-$ (c) Select $\sigma_{k+1} \ge \sigma_k$. (d) Check the stopping condition and increase k

See Malick, Povh, Rendl, W., 2007

observation: $X \succeq 0$, $Z \succeq 0$, ZX = 0 hold throughout the algorithm; once primal and dual feasibility reached we are optimal.

observation: $X \succeq 0$, $Z \succeq 0$, ZX = 0 hold throughout the algorithm; once primal and dual feasibility reached we are optimal.

computational effort in each iteration:

▶ solve $\mathcal{A}(\mathcal{A}^{\top}(y)) = rhs$ giving updated \tilde{y}

• compute
$$\tilde{Z} = (\mathcal{A}^{\top}(y) - C - \frac{1}{\sigma}X)_+$$

observation: $X \succeq 0$, $Z \succeq 0$, ZX = 0 hold throughout the algorithm; once primal and dual feasibility reached we are optimal.

computational effort in each iteration:

▶ solve $\mathcal{A}(\mathcal{A}^{\top}(y)) = rhs$ giving updated \tilde{y}

• compute
$$ilde{Z} = (\mathcal{A}^{ op}(y) - \mathcal{C} - rac{1}{\sigma}X)_+$$

example: when computing the ϑ -number: $\mathcal{A}(\mathcal{A}^{\top}(.))$ is diagonal. Therefore, the main computational effort is the projection on the positive semidefinite cone.

example: computing the $\vartheta\text{-number}$ for random graphs from the Kim Toh collection

graph	п	E	time (secs)
theta82	400	23871	87
theta83	400	39861	70
theta102	500	37466	143
theta103	500	62515	110
theta104	500	87244	124
theta123	600	90019	205
theta162	800	127599	570

boundary point method summarized

- works "orthogonal" to interior point methods
- convergence behavior not well understood
- for matrices of moderate size, but can deal with a large number of constraints

Semidefinite Programming solvers at the NEOS site: http://www.neos-server.org/

- csdp
- dsdp
- penbmi
- pensdp
- sdpa
- sdplr
- sdpt3
- sedumi

moreover: sdplib [B. Borchers] at http://euler.nmt.edu/~brian/sdplib/ and the sdp website [Ch. Helmberg] at http://www-user.tu-chemnitz.de/~helmberg/semidef.html

 solution method to choose depends on sizes and on structure of problems

- solution method to choose depends on sizes and on structure of problems
- ▶ interior point methods: many implementations available, limit $n \approx 1000, m \approx 10\ 000$

- solution method to choose depends on sizes and on structure of problems
- ▶ interior point methods: many implementations available, limit $n \approx 1000$, $m \approx 10\ 000$
- spectral bundle method: general tool for matrices of large dimension

- solution method to choose depends on sizes and on structure of problems
- ▶ interior point methods: many implementations available, limit $n \approx 1000$, $m \approx 10\ 000$
- spectral bundle method: general tool for matrices of large dimension
- bundle method: if partial Lagrangian dual is "nice"

- solution method to choose depends on sizes and on structure of problems
- ▶ interior point methods: many implementations available, limit $n \approx 1000, m \approx 10\ 000$
- spectral bundle method: general tool for matrices of large dimension
- bundle method: if partial Lagrangian dual is "nice"
- more methods: augmented Lagrangian methods, projection methods, low-rank methods,...

- solution method to choose depends on sizes and on structure of problems
- ▶ interior point methods: many implementations available, limit $n \approx 1000, m \approx 10\ 000$
- spectral bundle method: general tool for matrices of large dimension
- bundle method: if partial Lagrangian dual is "nice"
- more methods: augmented Lagrangian methods, projection methods, low-rank methods,...
- SDP is standard tool in optimization and sufficiently easy to use(?)

- solution method to choose depends on sizes and on structure of problems
- ▶ interior point methods: many implementations available, limit $n \approx 1000$, $m \approx 10\ 000$
- spectral bundle method: general tool for matrices of large dimension
- bundle method: if partial Lagrangian dual is "nice"
- more methods: augmented Lagrangian methods, projection methods, low-rank methods,...
- SDP is standard tool in optimization and sufficiently easy to use(?)

thank you for your attention!