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semidefinite programs: primal and dual

(SDP)


min 〈C ,X 〉
s.t. A(X ) = b

X � 0

min
X�0

max
y∈Rm

〈C ,X 〉+〈b −A(X ), y〉 ≥ max
y∈Rm

min
X�0
〈b, y〉+〈X ,C −A>(y)〉

(DSDP)


max b>y
s.t. A>(y) + Z = C

y ∈ Rm,Z � 0
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interior point methods

strong duality (primal = dual and optima are attained) holds if we
assume that both the primal and the dual problem have strictly
feasible points, i.e. (X , y ,Z ) feasible and X ,Z � 0.

Then it follows from the general Karush-Kuhn-Tucker theory that

(X , y ,Z ) is optimal ⇐⇒


A(X ) = b,X � 0

A>(y)− Z = C ,Z � 0

ZX = 0

note: ZX not symmetric −→ too many equations.
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interior point methods

assumption for rest of talk: (SCQ) holds: both the primal and the
dual problem have strictly feasible points, i.e., ∃(X , y ,Z ) feasible
and X ,Z � 0.

Consider, for µ > 0 the system:

(CP)


A(X ) = b,X � 0

A>(y)− Z = C ,Z � 0

ZX = µI

Fundamental Theorem for interior point methods (see e.g. SDP
Handbook, Chapter 10):

(CP) has a unique solution ∀µ > 0 ⇐⇒ (SCQ) holds.

this solution (X (µ)), y(µ),Z (µ)) forms a smooth curve, called
central path.
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interior point methods

path following methods: follow the central path by finding
points (close to it) for a decreasing sequence of µ.

primal-dual path-following methods: maintain X ,Z � 0 and try to
reach feasibility and optimality. Use Newtons method applied to
perturbed problem ZX = µI (or variant), and iterate for µ→ 0.

idea: starting at an interior point (X � 0, y ,Z � 0), find a search
direction (∆X ,∆y ,∆Z ) such that

(X , y ,Z ) + (∆X ,∆y ,∆Z )

comes closer to the central path for given µ, then reduce µ and
iterate.
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interior point methods

generic primal-dual interior point algorithm

Input.
starting point (X0 � 0, y0,Z0 � 0), ε > 0.

Initialization.
µ0 := 〈X0,Z0〉/n, k := 0.

while µk > ε or ‖A(Xk − b)‖∞ > ε or ‖A>(yk)− C − Zk‖∞ > ε
determine search direction (∆Xk ,∆yk ,∆Zk) from a linearized

model for µ(µk) such that ∆Xk and ∆Zk symmetric.
(Xk+1, yk+1,Zk+1) = (Xk , yk ,Zk) + αk(∆Xk ,∆yk ,∆Zk)

with αk such that Xk+1 � 0, Zk+1 � 0
µk+1 = 〈Xk+1,Zk+1〉/n
k = k + 1

end
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interior point methods

system to be solved to find appropriate (∆X ,∆y ,∆Z )

A(X + ∆X ) = b

A>(y + ∆y)− C = Z + ∆Z

(X + ∆X )(Z + ∆Z ) = µI

m + n(n+1)
2 + n2 equations in 2n(n+1)

2 + m variables (product of
symmetric matrices not symmetric in general) −→ overdetermined.
Many variations to fix this:

Replace ZX − µI = 0 by

I Z − µX−1 = 0

I X − µZ−1 = 0

I ZX + XZ − 2µI = 0

−→ different variants lead to different linearizations.
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interior point methods

At start of iteration: (X � 0, y ,Z � 0)

A(X + ∆X ) = b

A>(y + ∆y)− C = Z + ∆Z

(X + ∆X )(Z + ∆Z ) = µI

Linearized system (CP) to be solved for (∆X ,∆y ,∆Z ):

A(∆X ) = rP := b −A(X ) primal residue
A>(∆y)−∆Z = rD := Z + C −A>(y) dual residue
Z∆X + ∆ZX = µI − ZX path residue

The last equation can be reformulated in many ways, which all are
derived from the complementarity condition ZX = 0.
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interior point methods

direct approach: using the second and third equation to eliminate
∆X and ∆Z , and substituting into the first gives

∆Z = A>(∆y)− rD

∆X = µZ−1 − X − Z−1∆ZX

and the final system in ∆y to be solved:

A(Z−1A>(∆y)X ) = µA(Z−1)− b +A(Z−1rDX )

Note that the left hand side is a linear system

A(Z−1A>(∆y)X ) = M∆y ,

but the m ×m matrix M may be expensive to form.
[m. . . number of constraints of (SDP)]
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interior point methods

computational effort:

I explicitely determine Z−1 O(n3)

I several matrix multiplications O(n3)

I final system of order m to compute ∆y O(m3)

I forming the final system matrix O(mn3 + m2n2)

I line search to determine
X+ := X + α∆X ,Z+ := Z + α∆Z is at least O(n3)

note: effort to form system matrix depends on structure of A(.).

Limitations: n ≈ 1000,m ≈ 10000.
See benchmark website [H. Mittelmann] at
http://plato.asu.edu/bench.html

http://plato.asu.edu/bench.html
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interior point methods

example: consider the basic SDP relaxation of max-cut, i.e.,

(MC)


max 〈L,X 〉
s.t. diag(X ) = e

X � 0

X . . . n × n matrix, and n simple equations xii = 1.

∆Z = Diag(∆y), ∆X = −Z−1∆ZX + µZ−1 − X

and symmetrize
solve for ∆y

diag(Z−1Diag(∆y)X ) = µdiag(Z−1)− e

i.e.,
(Z−1 ◦ X )∆y = µdiag(Z−1)− e
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mcpsd.m

funct ion [ X , y , i t e r , s e c s ] = mcpsd ( L , d i g i t s ) ;

% inpu t : L . . . symmetr ic mat r i x
% output : X . . . p r ima l mat r i x
% y . . . dua l v a r i a b l e s
% s o l v e s : max t r (LX ) : d i ag (X)=e , X psd
% min e ’ y : Diag ( y)−L=Z psd
% c a l l : [X , y , i t e r , s e c s ] = mcpsd (L , d i g i t s ) ;
% f . r end l , 2/99

s t a r t=cputime ;

% i n i t i a l i z e data
[ n ] = s i z e ( L , 1 ) ;
i f nargin == 1 ; d i g i t s = 5 . 5 ; end ;



mcpsd.m

e = ones ( n , 1 ) ;
X = diag ( e ) ;
y = sum( abs ( L ) ) ’ + 1 . ;
Z = diag ( y ) − L ;
p h i = e ’ ∗ y ;
p s i = L ( : ) ’ ∗ X ( : ) ;
d e l t a = phi−p s i ;

mu = Z ( : ) ’ ∗ X ( : ) / ( 4 ∗ n ) ;
a l p h a p = 1 ; a l p h a d = 1 ; i t e r = 0 ;



mcpsd.m

whi le d e l t a > max ( [ abs ( p h i ) 1 ] ) ∗ 10ˆ(− d i g i t s )
% wh i l e d u a l i t y gap too l a r g e

Zi = inv (Z ) ; i t e r = i t e r + 1 ;
d z i = diag ( Z i ) ;
Z i = ( Zi + Zi ’ ) / 2 ;
% so l v e f o r dy :
dy = ( Zi .∗ X) \ (mu ∗ d z i − e ) ;
tmp = zeros ( n ) ;
f o r j =1:n

tmp ( : , j ) = Zi ( : , j )∗ dy ( j ) ;
end ;
dX = −tmp ∗ X + mu∗Zi −X ;
dX = (dX + dX ’ ) / 2 ; % symmetr i ze



mcpsd.m

% f i n d s t e p l e n g t h s a lphap and a lphad
a l p h a p = 1 ;
[ Zi , p o s d e f ] = chol (X + a l p h a p ∗ dX ) ;
whi le p o s d e f ˜= 0 ,

a l p h a p = a l p h a p ∗ . 8 ;
[ Zi , p o s d e f ] = chol (X + a l p h a p ∗ dX ) ;

end ;
% sta y away from boundary
i f a l p h a p < 1 , a l p h a p = a l p h a p ∗ . 9 5 ; end ;
X = X + a l p h a p ∗ dX ;



mcpsd.m

a l p h a d = 1 ;
dZ = sparse ( diag ( dy ) ) ;
[ Zi , p o s d e f ] = chol (Z + a l p h a d ∗ dZ ) ;
whi le p o s d e f ˜= 0 ;

a l p h a d = a l p h a d ∗ . 8 ;
[ Zi , p o s d e f ] = chol (Z + a l p h a d ∗ dZ ) ;

end ;
i f a l p h a d < 1 , a l p h a d = a l p h a d ∗ . 9 5 ; end ;

% update
y = y + a l p h a d ∗ dy ;
Z = Z + a l p h a d ∗ dZ ;



mcpsd.m

mu = X ( : ) ’ ∗ Z ( : ) / ( 2 ∗ n ) ;
% reduce mu, i f s t e p s i z e good :
i f a l p h a p + a l p h a d > 1 . 6

mu = mu ∗ . 7 5 ;
end ;
i f a l p h a p + a l p h a d > 1 . 9

mu = mu/ ( 1 . + . 1 ∗ i t e r ) ;
end ;

p h i = e ’ ∗ y ;
p s i = L ( : ) ’ ∗ X ( : ) ;
d e l t a = phi−p s i ;

disp ( [ i t e r a l p h a p a l p h a d log10 ( d e l t a ) p s i p h i ] ) ;
end ; % end o f main l oop

s e c s = cputime − s t a r t ;



interior point methods

run times for various graphs when solved using mcpsd.m

n seconds

200 2
400 7
600 16
800 35

1000 80
1500 260
2000 500



interior point methods

some implementations of interior point methods:

I SeDuMi [J. Sturm 98]: works under Matlab and Octave

I SDPT3 [K. Toh, M. Todd, R. Tutuncu]: Matlab

I CSDP [B. Borchers]: C-library

I SDPA [K. Fujisawa, M. Fukuda, Y. Futakata, K. Kobayashi,
M. Kojima, K. Nakata, M. Nakata, M. Yamashita, 95-14]:
C-libary, Matlab-interface

example: solve max-cut relaxation from before using SeDuMi
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mcpsd.m

funct ion [ x , y , i n f o ] = mcpsd ( L ) ;
% so l v e b a s i c max−cut r e l a x a t i o n u s i n g SeDuMi
% inpu t : Lap l a c e mat r i x L
% c a l l : [ x , y , i n f o ] = mcpsd (L ) ;

n = s i z e ( L , 1 ) ; % number o f nodes

% n c o n s t r a i n t s : d i ag (X) = e
At = [ ] ;
f o r i =1:n

B = sparse ( i , i , 1 , n , n ) ;
At ( : , i ) = B ( : ) ;

end ;

b = ones ( n , 1 ) ;



mcpsd.m

% ob j e c t i v e f u n c t i o n :
% max <L ,X> = min −vec (L ) ’∗ vec (X)
c = −L ( : ) ;

% s em i d e f i n i t e n e s s c o n s t r a i n t
K. s = [ n ] ;

[ x , y , i n f o ] = sedumi ( At , b , c ,K ) ;
y = −y ;



interior point methods

example: random SDP where each Ai is nonzero only on randomly
chosen 4× 4 submatrix, main diagonal is 0; solved using SeDuMi.

n m seconds

100 1000 11
100 2000 159
200 2000 151
200 5000 2607
300 5000 2395

No attempt with larger m due to memory and time.

more results: check out benchmark website [H. Mittelmann] at
http://plato.asu.edu/bench.html

http://plato.asu.edu/bench.html
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widely used format: sdpa format

max-cut relaxation for

L =


−7 0 4 0 3

0 7 −7 0 0
4 −7 5 0 −2
0 0 0 0 0
3 0 −2 0 −1



5 = mDIM
1 = nBLOCK
5 = bLOCKsTRUCT
1 1 1 1 1
0 1 1 1 −7
0 1 1 3 4
0 1 1 5 3
0 1 2 2 7
0 1 2 3 −7
0 1 3 3 5
0 1 3 5 −2
0 1 5 5 −1
1 1 1 1 1
2 1 2 2 1
3 1 3 3 1
4 1 4 4 1
5 1 5 5 1
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interior point methods

interior point methods summarized

I based on Newton’s method

I currently best convergence results

I many different kind of solvers (SeDuMi, CSDP, SDPA,
SDPT3, etc.) see website of benchmarks by H. Mittelmann

I computational effort depends strongly on:
I matrix dimension n
I number of constraints m (in each iteration, one needs to solve

a dense linear system of order m).

I limit of interior point methods: n ≈ 1000, m ≈ 10 000


