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Outline for the Day

9:15-10:15. lecture (Lee): Introduction to MINLP // Complexity
of MINLP: Hardness and polynomial tractability

10:15-11:00. coffee break

11:00-12:00. lecture (Lodi): General-purpose algorithms for convex
and non-convex MINLP

12:00-14:15. lunch

14:15-15:00. lecture (Lee): Non-convex quadratic MINLP

15:00-15:30. coffee break

15:30-16:15. lecture (Lodi): Software and computational advances

16:15-16:30. short break

16:30-17:00. problem session
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"The mother of all deterministic optimization problems" [Lee, 2008]

min f (x)
s.t. gi (x) ≤ 0 i = 1, . . . ,m

x ∈ X
xj ∈ Z j = 1, . . . , p
lj ≤ xj ≤ uj j = 1, . . . , p

(MINLP)

X ⊆ Rn polyhedral.

f and gi : X → R, i = 1, . . . ,m,
continuous, differentiable.
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"Well solved" subproblems

Nonlinear Programming (NLP)

p = 0 : local optima. + f and gi convex ⇒ global optima.

Mixed-Integer linear programming (MILP)

f linear, m = 0, p > 0
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MINLP

min f (x)
s.t. gi (x) ≤ 0 i = 1, . . . ,m

x ∈ X
xj ∈ Z j = 1, . . . , p
lj ≤ xj ≤ uj j = 1, . . . , p

(MINLP)

Solvable, in general, lj , uj finite.
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Two main classes of MINLP

Mixed Integer Convex Programming

Assume that the continuous relaxation is a convex optimization
problem.

f is a convex function.

gi are either convex function or describe a convex feasible region
(for example, second order cone constraints:

∑

x2
j ≤ x2

0 )

Mixed Integer Nonlinear Programming

Do not assume any convexity on f or gi .

Continuous relaxation is NP-hard to solve in general.

Remark: if lj and uj are finite integer variable can be seen as a
continuous satisfying

(xj − lj)(xj − lj − 1) . . . (xj − uj) = 0
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Mixed Integer Convex Programming Applications

Application nonlinear discrete
Portfolio optimization Risk, utility, robust-

ness
number of assets, min
investment

[Bienstock, 1996, Bonami and Lejeune, 2009, Vielma et al., 2008]
Chemical plant design Chemical reactions what to install
[Duran and Grossmann, 1986, Flores-Tlacuahuac and Biegler, 2007]
Block Layout Design Spatial constraints what to layout
[Castillo et al., 2005]
Networks with delays Delay as function of

traffic
Path, flows

[Boorstyn and Frank, 1977, Ameur and Ouorou, 2006]
Location with
stochastic services

Demands location model

[Elhedhli, 2006]
TSP with neighbor-
hoods (Robotics)

Definition of ngbh. TSP

[Gentilini et al., 2013]
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Mixed Integer Nonlinear Programming Applications

Application nonlinear discrete
Petrochemical Blending, pooling Which process
[Haverly, 1978]
Gas/Water networks Pressure loss Network topology
[Bragalli et al., 2011]
Nuclear Reactor
reloading

reactions What to reload

[Quist et al., 1999]
Airplane trajectory
optimization

aerodynamics waypoints, colision
avoidance,. . .

[Cafieri and Durand, 2013, Soler et al., 2013]
Mixed Integer Opti-
mal control

DE discrete controls

[Sager, 2005, 2012]
Countless more . . . . . .
see for example [Belotti et al., 2013]
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Agenda

The convex case
Main algorithmic approaches.
Glimpse at computation.

A step into nonconvexity
MIQP with CPLEX 12.6.
Basic setup of a spatial branch-and-bound.
Computational results.

Arbitrary selection of more advanced topics
Separability.
Disjunctive Cuts.

Conclusions

Problem Session

Bibliography
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The mixed integer convex program

min cT x
s.t. gi (x) ≤ 0 i = 1, . . . ,m

x ∈ X
xj ∈ Z j = 1, . . . , p
lj ≤ xj ≤ uj , j = 1, . . . , p

(MICP)

gi : X → R, i = 1, . . . ,m, convex, differentiable.

Assume linear objective. If necessary, add var α ∈ R and minα
with f (x) ≤ α as a constraint.
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Main Algorithms for solving (MICP)

x y

z

Fundamental property is convexity of the continuous relaxation, which
can be efficiently solved.

1 NLP Branch-and-bound [Gupta and Ravindran, 1985].

2 Outer Approximation Algorithm [Duran and Grossmann, 1986].
Builds an MILP equivalent of (MICP)

3 LP/NLP branch-and-cut [Quesada and Grossmann, 1992].
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NLP-based branch and bound

Straightforward generalization of main MILP
algorithm:

solve an NLP at each node of the tree.
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NLP-based branch and bound

Straightforward generalization of main MILP
algorithm:

solve an NLP at each node of the tree.

Branch on variables with fractional value.
integer
feasible

fathomed
by
bound

infeasible
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NLP-based branch and bound

Straightforward generalization of main MILP
algorithm:

solve an NLP at each node of the tree.

Branch on variables with fractional value.

Prune by infeasibility, bounds and integer
feasibility.

integer
feasible

fathomed
by
bound

infeasible
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NLP-based branch and bound

Straightforward generalization of main MILP
algorithm:

solve an NLP at each node of the tree.

Branch on variables with fractional value.

Prune by infeasibility, bounds and integer
feasibility.

Main issues

Warm-starting of NLP solves.

Difficulty of reusing MILP technologies.

integer
feasible

fathomed
by
bound

infeasible
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Outer Approximation [Duran and Grossmann, 1986]

min cT x

s.t.

gi (x) ≤ 0 i = 1, . . . ,m,

xj ∈ Z j = 1, . . . , p.

Idea: Take first-order approximations of constraints at different points
and build an equivalent MILP.
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Outer Approximation [Duran and Grossmann, 1986]

min cT x

s.t.

gi (x) ≤ 0 i = 1, . . . ,m,

xj ∈ Z j = 1, . . . , p.

Idea: Take first-order approximations of constraints at different points
and build an equivalent MILP.

min cT x

s.t.

gi (x
k) +∇gi (x

k)T (x − xk) ≤ 0 i = 1, . . . ,m, k = 1, . . . ,K

xj ∈ Z j = 1, . . . , p.
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Subproblems

Given x̂ ∈ Zp:

fixed NLP (NLP(x̂))

min cT x

s.t.

gi (x) ≤ 0 i = 1, . . . ,m

x ∈ X (NLP(x̂))

xj = x̂j j = 1, . . . , p.

If x̂ ∈ Zp, and feasible: gives an
upper bound.

fixed feasibility subproblem

min
m
∑

i=1

wi max{0, gi (x)}

s.t.

x ∈ X , (NLPF(x̂))

xj = x̂j , j = 1, . . . , p
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Subproblems

Given x̂ ∈ Zp:

fixed NLP (NLP(x̂))

min cT x

s.t.

gi (x) ≤ 0 i = 1, . . . ,m

x ∈ X (NLP(x̂))

xj = x̂j j = 1, . . . , p.

If x̂ ∈ Zp, and feasible: gives an
upper bound.

fixed feasibility subproblem

min
m
∑

i=1

wi max{0, gi (x)}

s.t.

x ∈ X , (NLPF(x̂))

xj = x̂j , j = 1, . . . , p

Remark: If (NLP(x̂)) is infeasible, NLP software will typically return a
solution to (NLPF(x̂)). By abuse, always say solution to (NLP(x̂))
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Equivalent MILP formulation of convex MINLP

For each x̂k ∈ K = Proj1,...,p(X ) ∩ Zp, let xk be an optimal solution to
(NLP(x̂)).

Theorem ([Duran and Grossmann, 1986])

If X ̸= ∅, f and g are convex, continuously differentiable, and a
constraint qualification holds for each xk then

min cT x

gi (x
k) +∇gi(x

k)T (x − xk) ≤ 0 i = 1, . . . ,m, x̂k ∈ K ,

x ∈ X , xj ∈ Z, j = 1, . . . , p.

has the same optimal value as (MICP).
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OA decomposition

Generate MILP equivalent by constraint generation.

Initialize with one set of linearizations.

min cT x

s.t.

gi (x
0) +∇gi(x

0)T (x − x0) ≤ 0,
i = 1, . . . ,m,

, (OA(K))

x ∈ X , xj ∈ Z, j = 1, . . . , p.

Where x0 is the solution to the continuous relaxation:
min{cT x : x ∈ X , gi(x) ≤ 0, i = 1, . . . ,m}
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OA decomposition

Generate MILP equivalent by constraint generation.

Initialize with one set of linearizations.

Enrich iteratively the set of linearizations K.

min cT x

s.t.

gi (x
k) +∇gi (x

k)T (x − xk) ≤ 0,
i = 1, . . . ,m,

x̂k ∈ K
, (OA(K))

x ∈ X , xj ∈ Z, j = 1, . . . , p.

Where x̂k is a solution to (OA(K)) and, for k = 1, . . . , |K|, xk is the
solution to (NLP(x̂)).
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OA decomposition

Generate MILP equivalent by constraint generation.

Initialize with one set of linearizations.

Enrich iteratively the set of linearizations K.

Convergence

At each iteration:

(OA(K)) gives a lower bound,

If feasible, (NLP(x̂)) gives an upper bound.

The theorem guarantees that the two bounds converge in finite # of
iterations.
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LP/NLP Branch and bound

OA can be embedded in a single tree search.

Start solving the same initial MILP by branch
and bound.

At each integer feasible node:

integer
feasi-
ble
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LP/NLP Branch and bound

OA can be embedded in a single tree search.

Start solving the same initial MILP by branch
and bound.

At each integer feasible node:
1 solve (NLP(x̂)), and enrich the set of

linearizations.
2 Resolve the LP relaxation of the node with

the new cuts.
3 Repeat as long as node is integer feasible. integer

feasi-
ble
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LP/NLP Branch and bound

OA can be embedded in a single tree search.

Start solving the same initial MILP by branch
and bound.

At each integer feasible node:
1 solve (NLP(x̂)), and enrich the set of

linearizations.
2 Resolve the LP relaxation of the node with

the new cuts.
3 Repeat as long as node is integer feasible.

Never prune by integer feasibility.
integer
feasi-
ble
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Solvers for Mixed Integer Convex Programs

Solver Reference Algorithm(s)
Dicopt OA
MINLP_BB [Leyffer, 1998] NLP BB
SBB [Bussieck and Drud, 2001] NLP BB
α-ECP [Westerlund and Lundqvist, 2005] ECP (variant of OA)
Bonmin [Bonami et al., 2008] NLP BB, OA, LP/NLP
FilMINT [Abhishek et al., 2010] LP/NLP
KNITRO [Byrd et al., 2006] NLP BB, LP/NLP
SCIP [Vigerske, 2013] LP/NLP
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Comparison of solvers in GAMS [Vigerske, 2012]
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Comparison of solvers in GAMS [Vigerske, 2012]
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Note on results with Bonmin

Bonmin’s OA using CPLEX seems the best algorithm overall.
It is also the simplest: a loop calling CPLEX (MILP) and Ipopt
(NLP) alternatively as black boxes.
Improves with CPLEX.

Bonmin’s Hyb is in the pack of relatively good solvers
own variant of LP/NLP BB.
Reuse CBC infrastructure, LP solver, Cuts, MIP presolve.
Improves at a slower pace.

Bonmin’s BB clearly behind.
pure NLP based branch-and-bound. Does not reuse much from
Cbc. Everything specifically tailored.
Better implementation exists that should be on par with Hyb.
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Agenda

The convex case
Main algorithmic approaches.
Glimpse at computation.

A step into nonconvexity
MIQP with CPLEX 12.6.
Basic setup of a spatial branch-and-bound.
Computational results.

Arbitrary selection of more advanced topics
Separability.
Disjunctive Cuts.

Conclusions

Problem Session
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(MI)QP

min
1

2
xT Qx + cT x

s.t.

Ax = b

xj ∈ Z j = 1, . . . , p

l ≤ x ≤ u

(MIQP)

(with Q symmetric),
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(MI)QP

min
1

2
xT Qx + cT x

s.t.

Ax = b

xj ∈ Z j = 1, . . . , p

l ≤ x ≤ u

(MIQP)

(with Q symmetric),

History of MIQP with CPLEX

class p Q algorithme V. (Year)
Convex QP 0 ≽ 0 barrier 4.0 (1995)
– – – QP simplex 8.0 (2002)
convex MIQP > 0 ≽ 0 B&B 8.0 (2002)
nonconvex QP 0 ̸≽ 0 barrier (local) 12.3 (2011)
– – – spatial B&B (global) 12.6 (2013)
nonconvex MIQP > 0 ̸≽ 0 spatial B&B (global) 12.6 (2013)
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Example

Let G = (N,E ) be a graph and Q be the incidence matrix of G . The
optimal value of:

min
1

2
xT Qx

s.t.
∑

j∈N

xj = 1

x ≥ 0.

is 1
2

(

1 − 1
χ(G)

)

where χ(G ) is the clique number of G [Motzkin and

Straus, 1965],

⇒ QP is NP-hard

More generally QPs on the simplex (general Q) can be solved by a
nonlinear maximum clique algorithm [Scozzari and Tardella, 2008].
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Local solver of nonconvex QP

Primal Dual Interior Point Algorithm.

Available since IBM CPLEX 12.3.

Not enabled by default, if Q is indefinite CPLEX will return
CPXERR_Q_NOT_POS_DEF.

Activated by setting the option solution target to 2 (or
CPX_SOLUTIONTARGET_FIRSTORDER).

Approach used by Ipopt but no need for
Feasibility restoration
Second order correction
Filter

Own implementation of indefinite factorization.
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Global (MI)QP

Activated by setting solution target to 3 (or
CPX_SOLUTIONTARGET_OPTIMALGLOBAL).

Note: previous versions could already solve some nonconvex MIQPs
(pure 0-1 QPs, convex after presolve...)

Notes on complexity

Checking if a feasible solution is not a local minimum is
coNP-Complete.

Checking if a nonconvex QP is unbounded is NP-complete.

B&B spatial

Establish a convex (easily solvable) relaxation.

Establish branching rules on solutions of this relaxation.
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Elementary relaxations: Secant Approximation

The convex hull relaxations of a square term x2
1

x1

x2
1

x1 = l1 x1 = u1

{y ≤ x2
1}
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Elementary relaxations: Secant Approximation

The convex hull relaxations of a square term x2
1

x1 = l1 x1 = u1

Secant approximation
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Elementary relaxations: Secant Approximation

The convex hull relaxations of a square term x2
1

x2
1 ≤ y+

ii := (l1 + u1)x1 − l1u1
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Elementary relaxations: McCormick formulas

The convex hull relaxations of a single product x1x2 [McCormick, 1976]

x1

x2

x1x2
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Elementary relaxations: McCormick formulas

The convex hull relaxations of a single product x1x2 [McCormick, 1976]

x1x2 ≥ y−
12 := max

{

u2x1 + u1x2 − u1u2

l2x1 + l1x2 − l1l2

}

x1x2 ≤ y+
12 := min

{

u2x1 + l1x2 − l1u2

l2x1 + u1x2 − u1l2

}

x1

x2

x1x2
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Elementary relaxations: McCormick formulas

The convex hull relaxations of a single product x1x2 [McCormick, 1976]

x1x2 ≥ y−
12 := max

{

u2x1 + u1x2 − u1u2

l2x1 + l1x2 − l1l2

}

x1x2 ≤ y+
12 := min

{

u2x1 + l1x2 − l1u2

l2x1 + u1x2 − u1l2

}

x1

x2

x1x2

Depending on the sign of qij we only need y+ or y−.

For simplicity, we assume we put all in the remainder.
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Q-space reformulation and relaxation

Let Q = P + Q̃ with P the diagonal psd matrix containing qii > 0.

min
1

2
xTPx +

1

2
xT Q̃x + cT x

s.t.

Ax = b

xj ∈ Z j = 1, . . . , p

l ≤ x ≤ u

(MIQP)
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Q-space reformulation and relaxation

Let Q = P + Q̃ with P the diagonal psd matrix containing qii > 0.

Add one yij = xixj variable for each non-zero entry qij of Q̃.

min
1

2
xTPx +

1

2
⟨Q̃,Y ⟩+ cT x

s.t.

Ax = b

xj ∈ Z j = 1, . . . , p

Y = xxT

l ≤ x ≤ u

(MIQP)

( ⟨Q,Y ⟩ =
∑

i ,j qijyij )
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Q-space reformulation and relaxation

Let Q = P + Q̃ with P the diagonal psd matrix containing qii > 0.

Add one yij = xixj variable for each non-zero entry qij of Q̃.

Relax yij = xixj using McCormik and Secant approximations.

min
1

2
xTPx +

1

2
⟨Q̃,Y ⟩+ cT x

s.t.

Ax = b

xj ∈ Z j = 1, . . . , p

y−
ij ≤ yij ≤ y+

ij

yii ≤ y+
ii

l ≤ x ≤ u

(q-MIQP)
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Factorizations of Q

CPLEX own block indefinite decomposition: M and B such that M
2-block triangular and B 2-blocks diagonal with Q = MTBM

Reformulate xT Qx using additional variables z so that
zTDz = xT Bx and D diagonal. Let L, D give the spectral
decomposition of B , z = Lζ, ζ = Mx .

(For simplicity assume z = Lx gives the system we want)
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Factorized Eigenvector space reformulation and relaxation

Use a decomposition to get z = Lx and zTDz = xTQx and do the
same steps as before (but more simple)....

min
1

2
zTDz + cT x

s.t.

Ax = b, Lx = z

xj ∈ Z j = 1, . . . , p

l ≤ x ≤ u

(MIQP)
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Factorized Eigenvector space reformulation and relaxation

Use a decomposition to get z = Lx and zTDz = xTQx and do the
same steps as before (but more simple)....

Let D = D+ − D− with D± diagonal psd matrices.

min
1

2
(zT D+z − zT D−z) + cTx

s.t.

Ax = b, Lx = z

xj ∈ Z j = 1, . . . , p

l ≤ x ≤ u

(MIQP)
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Factorized Eigenvector space reformulation and relaxation

Use a decomposition to get z = Lx and zTDz = xTQx and do the
same steps as before (but more simple)....

Let D = D+ − D− with D± diagonal psd matrices.

Add yii ≤ z2 variable for each non-zero of D−.

min
1

2
zTD+z −

n
∑

i=1

dii

2
yii + cT x

s.t.

Ax = b, Lx = z

xj ∈ Z j = 1, . . . , p

yii ≤ z2
i

l ≤ x ≤ u

(MIQP)
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Factorized Eigenvector space reformulation and relaxation

Use a decomposition to get z = Lx and zTDz = xTQx and do the
same steps as before (but more simple)....

Let D = D+ − D− with D± diagonal psd matrices.

Add yii ≤ z2 variable for each non-zero of D−.

Infer finite bounds, l z , uz for z and relax yii ≤ z2
i using Secant

approximations.

min
1

2
zTD+z −

n
∑

i=1

dii

2
yii + cT x

s.t.

Ax = b, Lx = z

xj ∈ Z j = 1, . . . , p

yii ≤ y+
ii

l ≤ x ≤ u, l z ≤ z ≤ uz

(ev-MIQP)
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Notes on the two relaxations

The steps are almost the same.

If Q is diagonal the two relaxations are identical.

In general they are not comparable.

If Q ≽ 0, EV-space is better it preserves convexity.

Q-space gives a surprisingly good approximation. Namely, [Luedtke
et al., 2012] show that, if Q has a 0 diagonal, for the box QP:
min{xT Qx : 0 ≤ x ≤ 1}:

if Q ≥ 0 the approximation is within a factor 2:
if Q ̸≥ 0 the approximation is within a factor of # nnz in Q

(conjecture it is better)

Many ways to do better splittings of Q, for example, with SDP
[Billionnet et al., 2012].

CPLEX current strategy

Uses EV-space if problem looks almost convex.
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Branching

Let (x , y ) be the solution of the chosen QP relaxation after
presolve/cutting. And assume xj ∈ Z, j = 1, . . . , p.

If ∃y ij ̸= x ix j , (x , y) is not a solution of the problem and we need
to branch.

Pick an index i , choose a value θ between li+ui
2 and x i .

Branch by changing the bound to θ and updating all Secant and
McCormick approximations involving this bound.

x1

x2

x1x2

31 Andrea Lodi, University of Bologna



Branching

Let (x , y ) be the solution of the chosen QP relaxation after
presolve/cutting. And assume xj ∈ Z, j = 1, . . . , p.

If ∃y ij ̸= x ix j , (x , y) is not a solution of the problem and we need
to branch.

Pick an index i , choose a value θ between li+ui
2 and x i .

Branch by changing the bound to θ and updating all Secant and
McCormick approximations involving this bound.

31 Andrea Lodi, University of Bologna



Branching

Let (x , y ) be the solution of the chosen QP relaxation after
presolve/cutting. And assume xj ∈ Z, j = 1, . . . , p.

If ∃y ij ̸= x ix j , (x , y) is not a solution of the problem and we need
to branch.

Pick an index i , choose a value θ between li+ui
2 and x i .

Branch by changing the bound to θ and updating all Secant and
McCormick approximations involving this bound.

xi = θ

x1 = θ
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Branching

Let (x , y ) be the solution of the chosen QP relaxation after
presolve/cutting. And assume xj ∈ Z, j = 1, . . . , p.

If ∃y ij ̸= x ix j , (x , y) is not a solution of the problem and we need
to branch.

Pick an index i , choose a value θ between li+ui
2 and x i .

Branch by changing the bound to θ and updating all Secant and
McCormick approximations involving this bound.

xi = θ

x1 = θ
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Other ingredients

Convex QP relaxation solved by a QP simplex.

Interior point solver for improving incumbents.

Bound strengthening based on the KKT system.

Linearize completely parts of the problem involving binary variables.

Heuristic detection of unbounded problems.

Multi-threaded.
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Notes on unbounded problems

Try to bound all auxiliary variables with a basic presolve.

If not possible, do it by solving LPs.

If there is an unbounded direction r look at its cost rTQr :
If rTQr < 0: problem is unbounded,
If rTQr ≥ 0: relaxation is unbounded but cannot conclude on
problem status, return RELAXATION_UNBOUNDED.

(Very easy to construct examples where can’t conclude).

[Hu et al., 2012]

Propose a KKT system that detects unbounded problems correctly.

Use a combinatorial Benders approach to solve it.
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Computational testing

Test set

390 models

Internal nonconvex MIQP (with three variants: original, 50%
integer relaxed, 100 % relaxed).

GAMS Globallib

minlp.org, Box-QP, Tardella instances, . . .

CUTEr problems with flipped objective

Experiments

Not really any other solver aimed specifically at nonconvex MIQP.

Compare with SCIP 3.0.1 [Vigerske, 2013] and Couenne 0.4
[Belotti et al., 2009] using 1 thread.

Compare CPLEX with 1 and 4 threads.

Time limit of 3 hours.
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Comparison with SCIP on different test-sets

100

101

102

all ≥1 ≥10 ≥10
2

With timeouts

<1 1:10 10:102
10

2:103
10

3:104

Without timeouts

Pure 0-1 models. Timeouts: SCIP 5.

Mixed 0-1 models. Timeouts: CPLEX 2 , SCIP 2.

Continuous and general integers. Timeouts: CPLEX 1, SCIP 29.
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CPLEX vs SCIP vs Couenne: time

100

101

102

all ≥1 ≥10 ≥10
2

With timeouts

<1 1:10 10:102
10

2:103
10

3:104

Without timeouts

SCIP. 36 timeouts, 5 failures.

Couenne. 22 timeouts, 47 failures

CPLEX 3 timeouts and 7 failures.
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CPLEX vs SCIP vs Couenne: Nodes

0

5

10

all ≥1 ≥10 ≥10
2

With timeouts

<1 1:10 10:102
10

2:103
10

3:104

Without timeouts

SCIP. 36 timeouts, 5 failures.

Couenne. 22 timeouts, 47 failures

CPLEX 3 timeouts and 7 failures.
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CPLEX only, 1 versus 4 threads on computing time

0

0.2

0.4

0.6

0.8

1.0

all ≥1 ≥10 ≥10
2

With timeouts

<1 1:10 10:102
10

2:103
10

3:104

Without timeouts

4 models not solved with 1 threads solved with 4.
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Agenda

The convex case
Main algorithmic approaches.
Glimpse at computation.

A step into nonconvexity
MIQP with CPLEX 12.6.
Basic setup of a spatial branch-and-bound.
Computational results.

Arbitrary selection of more advanced topics
Separability.
Disjunctive Cuts.

Conclusions

Problem Session
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Advanced algorithms for convex case

Preprocessing/Modeling:
separability [Hijazi et al., 14]
perspective formulations [Frangioni and Gentile, 2006, Günlük and
Linderoth, 2008]
propagation [Vigerske, 2013]

Node relaxations/Branching:
exploiting QP relaxation in strong-branching [Bonami et al., 2013]
item divings [Mahajan et al., 2012]

Primal Heuristics:
Feasibility Pumps [Bonami et al., 2009],
Undercover [Berthold and Gleixner, 2013]

Cuts:
disjunctive cuts [Kılınc et al., 2011, Bonami, 2011],
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Separable mixed integer convex programs

min cTx
s.t. gi(x) ≤ 0 i = 1, . . . ,m

x ∈ X
xj ∈ Z j = 1, . . . , p
l ≤ x ≤ u

(sMINLP)

For i = 1, . . . ,m, gi : X → R are convex separable:

gi (x) =
n

∑

j=1

gij(xj )

with gij : [lj , uj ] → R convex.
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Extended formulation

Introduce one variable yij for each elementary function:

min cT x

s.t.
n
∑

j=1

yij ≤ 0 i = 1, . . . ,m,

gij(xj ) ≤ yij
i = 1, . . . ,m,
j = 1, . . . , n,

x ∈ X ,
xi ∈ Z i = 1, . . . , p,
l ≤ x ≤ u.

(sMINLP∗)
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Experimental Illustration

In the standard benchmark for MICP, out of 100+ instances, 8 are
not directly separable.
Constructing separated formulations on a subset of 47 instances
gives a 3x speed up: [Hijazi et al., 14].
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Cutting planes for MICP

Cuts are an essential component of MILP solvers.

Of course one can always apply MILP cuts to a linear OA of MICP.

How can we generate cuts that also exploit nonlinear constraints?

Can we generate better cuts by looking directly at nonlinear
functions?

A partial answer: as long as the cut generated is linear it could also
have been obtained from a linear outer approximation.

In the past three years, tremendous activity towards conic cuts for
conic programming but no general method yet, and no striking
computational results.
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Split Relaxation

Consider C and M := C ∩ (Zp × Rn−p).
Let k ≤ p, π ∈ Z and

C(π,π0) := conv

(

C∩({x : xk ≤ π}∪

{x : x ≥ π + 1})

)

.

(clearly M ⊆ C(π,π0) ⊆ C).
x1

x2

x1 = 0 x1 = 1

C

M
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Split Relaxation

Consider C and M := C ∩ (Zp × Rn−p).
Let k ≤ p, π ∈ Z and

C(π,π0) := conv

(

C∩({x : xk ≤ π}∪

{x : x ≥ π + 1})

)

.

(clearly M ⊆ C(π,π0) ⊆ C).

In the remainder, x̂ is the point to
separate, x̂k ∈]0, 1[ (k ≤ p), and π = 0

C (π,π0)

x̂αT
x = β
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MILP case

Consider C a polyhedron {x : Ax = b, x ≥ 0}

Cut Generation LP

x̂ ∈ C is separated using disjunctive programming:

minαT x̂ − β

s.t. :

α = uT A + s − u0ek , α = vTA + t + v0ek ,

β = uTb, β = vT b + v0,
α ∈ Rn,β ∈ R, u, v ∈ Rm, s, t ∈ Rn

+, u0, v0 ∈ R+

(CGLP)
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Generalization: Two competing approaches

Goal: build a linear OA from which a "best" cut can be deduced using
CGLP.

Using only LP [Kılınc et al., 2011].

1 Start with any linear OA of C

2 Solve CGLP. If no cut is found.

3 Deduce from dual of CGLP
two points such that
x̂ = λx1 + (1 − λ)x0 and
satisfying the disjunction.

4 If point(s) not in C generate
new OA and goto 2, otherwise
use the cut.

Using NLP [Bonami, 2011]

1 Solve a single NLP that tells if
x̂ is in the split relaxation.

2 If not, deduce from solution
two points such that
x̂ = λx1 + (1 − λ)x0 and
closest to satisfy the
disjunction.

3 Build OA around these two
points.

4 Solve CGLP and get the cut.
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Generalization: Two competing approaches in pictures

Goal: build a linear OA from which a "best" cut can be deduced using
CGLP.

x̂

πT x ≤ π0 πT x ≥ π0 + 1

x̂

πT x ≤ π0 πT x ≥ π0 + 1
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Snapshot of results

[Kılınc et al., 2011] report a speedup of 3 on a set of "hard"
instances with the NLP/LP FilMINT.
[Bonami, 2011] report a speedup of 24 % on nontrivial instances
with NLP B&B.
In both cases, some instances not solved without these cuts are
then solved within seconds.

Combination with separability[Kılınç, 2011]

Even better results are obtained by combining the extended formulation
trick for separability and these cuts.

Original Extended
n gap closed sol time gap closed sol time

Batch 10 58.40 376.2 68.77 58.7
Markowitz 10 0.00 > 10 800 98.07 1 262
SLay 14 68.50 36 86.08 5
uflquad 15 10.85 784 96.25 145
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Conclusion

MINLP is still very challenging and not well solved.
In the last three years:

SCIP [Vigerske, 2013]
MINOTAUR [Leyffer et al., 2012]
GLOMIQO/ANTIGONE [Misener and Floudas, 2013]

(each brought tremendous improvement over the state of the
art).

Commercial vendors are also moving.
Good solvers need good test-sets:

www.minlp.org: repository of models.
more is needed.
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How bad can outer approximation be?

Consider the following family of convex MINLPs:

min cTx

s.t.
∑n

i=1

(

xi −
1
2

)2
≤ n−1

4
x ∈ Zn

(1)

(1) is infeasible:

The ball is too small to contain
integer points.

It is large enough to touch
every edge of the hypercube.

x
y

z
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Solving (1) with OA cuts

No OA constraint can cut 2
vertices of the hypercube.

If an inequality cuts two
vertices, it cuts the segment
joining them. This cannot
be: the ball has non-empty
intersection with any such
segment.

x y

z
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Solving (1) with OA cuts

No OA constraint can cut 2
vertices of the hypercube.

If an inequality cuts two
vertices, it cuts the segment
joining them. This cannot
be: the ball has non-empty
intersection with any such
segment.

OA decomposition takes at
least 2n iterations (each
iteration requires solving a
MILP).

An OA Based branch-and-cut
would take at least 2n nodes.

x y

z

Note: NLP branch-and-bound
also enumerates at least 2n

integer sols.
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Experimental illustration

CPLEX SCIP 2.1 B-OA B-Hyb
n 2n nodes nodes OA it. nodes
10 1,024 2,047 720 1,105 11,156
15 32,768 65,535 31,993 . . . 947,014
20 1,048,576 2,097,151 1,216,354 . . . . . .
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Experimental illustration

CPLEX SCIP 2.1 B-OA B-Hyb
n 2n nodes nodes OA it. nodes
10 1,024 2,047 720 1,105 11,156
15 32,768 65,535 31,993 . . . 947,014
20 1,048,576 2,097,151 1,216,354 . . . . . .

Remark

Problem is simple for CPLEX/SCIP if variables are 0 − 1: replace
x2
i by xi , the contradiction n

4 ≤ n−1
4 follows.

SCIP > 3.0 applies tricks and solves it in a blink.
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Application to (1) [Hijazi et al., 14]

Extended formulation of (1)

min cT x

s.t.
n

∑

i=1

yi ≤ (n − 1)/4

(xi − 0.5)2 ≤ yi i = 1, . . . , n

x ∈ Z
n.

(2)

x
y

z

Its outer approximation

min cTx

s.t.
n

∑

i=1

yi ≤ (n − 1)/4

2
(

xk
i − 0.5

)

(xi − xk
i ) +

(

xk
i − 0.5

)2
≤ yi

i = 1, . . . , n
k = 1, . . . ,K

x ∈ Z
n
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Application to (1) [Hijazi et al., 14]

Extended formulation of (1)

min cT x

s.t.
n

∑

i=1

yi ≤ (n − 1)/4

(xi − 0.5)2 ≤ yi i = 1, . . . , n

x ∈ Z
n.

(2)
Its outer approximation

min cTx

s.t.
n

∑

i=1

yi ≤ (n − 1)/4

2
(

xk
i − 0.5

)

(xi − xk
i ) +

(

xk
i − 0.5

)2
≤ yi

i = 1, . . . , n
k = 1, . . . ,K

x ∈ Z
n

2 points suffice to make it infeasible x1 = 0 and
x2 = 1:

− xi + 0.25 ≤ yi i = 1, . . . , n

xi − 0.75+ ≤ yi i = 1, . . . , n
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