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lllustrative case for energy planning: EGCEP

@ Assume a model for addressing challenges for a long term
(e.g., 30 years) power generation capacity expansion
planning.

@ Scope: Helping to decision making on:

© Type and mix of power generation sources (ranging from
coal, nuclear and combined cycle gas turbine to more
renewable sources: hydroelectric, wind, solar, photovoltaic
and biomass)

@ New power generation plant / farm location and capacity
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lllustrative case for energy planning: EGCEP.
Characteristics

@ Uncertainty, Multicriteria and Nonlinearity in EGCEP
@ A gigantic but well structured multicriteria multistage
SMINO problem with risk management.
@ Dynamic setting
@ Site location and capacity decisions
@ Replicated networks (hydro valleys). Eg., 20+ valleys, some
with 50 elements, see S. Charousset, COST WMINLP,
Paris, 2013.
@ General networks: (current and candidate power generation
plants, energy demand node)
@ Algorithmic framework for MINO under uncertainty in
dynamic setting, see LFE et al., WMINLP, Pittsburgh, 2014.
@ SMINO in Electricity Generation, see S. Charousset,
COST WMINLP, Paris, 2013.
@ Assumption: Transmission network is not a constraint.

Otherwise, see EGCTEP in LFE et al., COST Workshop,
Budapest, 2014.
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Uncertainty in EGCEP. Main parameters

@ Market electricity demand and prices at the network nodes
of the energy system.

@ Raw material cost and availability: Fuel, Water exogenous
inflow, Wind, Solar intensity.

@ Operating hours per period of power generation
technologies.

@ CO, emission permits and Green Certificates prices and
allowed bounds.

@ Power generation fixed and variable cost of different
technologies
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Uncertainty in EGCEP. Main parameters (c.)

@ Electricity loss of new transmission technologies.

@ Characteristics (i.e., maximum energy flow and reactance)
of cable types on new energy transmission lines.

@ Fixed and variables costs of energy transmission
technologies.
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Uncertainty in EGCEP. Representation

@ A stage in time horizon: Consecutive years whose
constraint systems must be satisfied in an individual basis).

@ Multistage non-symmetric scenario tree
@ Itis required a 'must’ combination of:

@ Sample scenario schemes

@ SMINO — Sequential SMILO

@ inexact scenario group Decomposition algos
@ High Performance Computing
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Multicriteria in EGCEP

@ Maximizing NPV of expected investment and consumer
stakeholders goals over the scenarios along the time
horizon subject to risk reduction of the negative impact of
non-wanted scenarios on multiple types of utility objectives
and stakeholders:

@ Maximizing power share of cleaner, safer and efficient
-cheaper- energy accessible to all consumption nodes.

@ EC directives on environmental issues and others.

o EU governments, etc.
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EGCEP. Aim

@ A mathematical optimization model may help to determine
the evolution of the power generation mix and location
along a time horizon. So, it determines for every power
generation technology:

@ site location of each new power plant

@ year to start the construction
depending on the scenario group (i.e., node in the
scenario tree) along the time horizon.

@ It has to be considered that at the year when the new
power plant is ready for being in operation, the realization
of uncertain prices and electricity demand and other
key uncertain elements can be drastically changed
along the scenario tree from the scenario group where
the construction have started.

Laureano F. Escudero Universidad Rey| soL-vai-tsp



Expected Value (deterministic) mixed 0-1 optimization

model

Zpy = méXZFt(dt,Xt)
teT
sty fi(e",x")=ht  wteT 1)
t’e At
6t € {0,1}"0 xt c RV vt € T.
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Math Optimization under uncertainty
Multistage scenario tree

A stage of a given horizon is a set of consecutive time periods
where the realization of the uncertain parameters takes place.

A scenario is a realization of the uncertain parameters along
the stages of a given horizon.

A scenario group for a given stage is the set of scenarios with
the same realization of the uncertain parameters up to the
stage.
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Q9,

set of the T stages along the horizon.
set of scenarios.

set of scenario groups, so that we have a directed graph
where G is the set of nodes.

set of scenario groups in stage t, fort € 7 (G' C G).
set of scenarios in group g, forg € G (29 C Q).

set of ancestor nodes (scenario groups) in the scenario
tree to node (scenario) g (including itself), forg € G.

set of ancestor nodes in the scenario tree to node g
(including itself) whose related variables have nonzero
elements in the constraints of node g, forg € G.
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w, likelihood or weight assigned by the user to scenario
w e Q.
wY, weight assigned by modeler to scenario group g € G. ltis

computed as
wo =) w

Note: Any scenario group g from last stage is a singleton one
and, since w € Q9 for g € GT, then let assume g = w.
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Multistage Mixed 0-1 DEM: Risk neutral strategy

Zpn = Max > wIF9(59,x9)
geg
sty f9(s9,x%) = ho Vg €G (2)
qeA
59 ¢ {0’1}n5(9)7 x9 € R™Q) vgeg.
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Time Stochastic Dominance risk averse strategy

@ The risk neutral (RN) model maximizes the objective
function expected value. It ignores the variability of the
objective function value over the scenarios, in particular
the “left” tail of the non-wanted scenarios.
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Time Stochastic Dominance risk averse strategy

@ The risk neutral (RN) model maximizes the objective
function expected value. It ignores the variability of the
objective function value over the scenarios, in particular
the “left” tail of the non-wanted scenarios.

@ There are some risk averse approaches that additionally
deal with risk management.
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Time Stochastic Dominance risk averse strategy

@ The risk neutral (RN) model maximizes the objective
function expected value. It ignores the variability of the
objective function value over the scenarios, in particular
the “left” tail of the non-wanted scenarios.

@ There are some risk averse approaches that additionally
deal with risk management.

@ Among them, the Time Stochastic Dominance (TSD) risk
averse strategy reduces the risk of a negative impact of the
solution in non-wanted scenarios (i.e., black swan
scenarios).
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Time Stochastic Dominance risk averse strategy (c.)

TSD strategy also aims to maximize the objective function
expected value as RN, but, additionally:

@ A set of given thresholds on the value of each function
under consideration (including the objective one) for each
scenario should be satisfied

@ with a bound target on the probability of failure due to a
shortfall on reaching each threshold

@ as well as a bound target on the expected shortfall on
reaching it for each selected stage along the time horizon,
and

@ a bound target on the shortfall
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TSD strategy: Elements

Set of modeler-driven profiles , say P! vt € 7%, 4 € W, being
7Y C T the set of stages where TSD has to be imposed for
function ¢ € W, where V is the set of functions to consider in a
decreasing order of priority.

@ ¢P, objective function threshold to be satisfied up to
scenario group g in the scenario tree, for g € Gt
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Set of modeler-driven profiles , say P! vt € 7%, 4 € W, being
7Y C T the set of stages where TSD has to be imposed for
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TSD strategy: Elements

Set of modeler-driven profiles , say P! vt € 7%, 4 € W, being
7Y C T the set of stages where TSD has to be imposed for
function ¢ € W, where V is the set of functions to consider in a
decreasing order of priority.

@ ¢P, objective function threshold to be satisfied up to
scenario group g in the scenario tree, for g € Gt

@ SP, maximum shortfall target that is allowed on reaching
the threshold up to scenario group g

@ sP, upper bound target on the expected shortfall on
reaching the threshold

@ P, upper bound target on the fraction of scenarios with
shortfall
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TSD strategy: Additional variables

@ s% shortfall (continuous) variable that, obviously, is equal
to the difference (if it is positive) between threshold ¢P and
the value in the given function up to scenario group g,

@ 9P 0-1 variable such that its value is 1 if there is shortfall

for the value of the given function up to scenario group g.
That is, 9 = 1 for s9% > 0.

@ £, €l and 62, slack variables that take the violation of the
S-, s- and S-bounds, res.

@ being Mg, M{ and M, big enough M-parameters for
penalizing the slack variables in the objective function.
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TSD strategy: SMINO — Sequential SMILO

Zrsp = max » wOFJ(69,x9)—
geg

ST DT (MBER + M2+ MEEP)

eV te7vw pePt

> 19(5%,x9) = ho Vg € G

ge.A9

69 € {0,1}(9) x9 ¢ R™(9) Vg eg

> FI(0%,x9) + 8% > ¢P VgeGlpePiteTV eV
qeAs

0<s® <SPUP + R 1% e{0,1} VgeG,pePteTV¢veVv
D wIs® <54 L YpePiteTV pev

gegt

D wIP < P e VpePiteTV pevw

gegt

P P eR, Vp e Plte TV, yeV.
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Risk Averse multistage Stochastic Dominance

Constraints (SDC) strategies: Refs.

@ First-order SDC: Gollmer-Neise-Schultz SIOPT'08 for
two-stage.

@ Second-order SDC: Gollmer-Gotzes-Schultz MP’11 for
two-stage.

@ Computational comparison of risk averse strategies:
Alonso.Ayuso-Carvallo-LFE-Guignard-Pi-Puranmalka-
Weintraub EJOR’14.

@ TSD: On Time Stochastic Dominance induced by mixed
integer-linear recourse in multistage stochastic programs:
LFE-Garin-Merino-Pérez EJOR’14 1st revision.
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Multistage decomposition methods

@ Lagrangeans (MCLD strong lower bound provider),
LFE-Garin-Unzueta-Pérez COR’13 and submitted 2014
@ Branch-and-Fix Coordination (BFC):
@ exact sequential BFC risk neutral
(LFE-Garin-Merino-Pérez COR’12)
@ exact parallel computing BFC  risk neutral
(Aldasoro-LFE-Merino-Pérez COR'13)
@ inexact ELP risk neutral
(Beltran.Royo-LFE-Monge-Rodriguez.Revines COR’14)
@ Parallel computing SDP risk neutral
(Aldasoro-LFE-Merino-Monge-Pérez submitted 2014)
@ plus treating the cross scenario group constraints
@ exact BFC risk averse TSD
(LFE-Garin-Merino-Pérez EJOR'14 1st revision)
@ inexact SDP risk averse TSD
(LFE-Monge-Romero.Morales COR’14 1st revision)
@ inexact FRC risk averse TSD
(LFE-Garin-Pizarro-Unzueta in preparation)
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Case study for solution validation

Computational Characteristics:

@ BFC-TSD decomposition algo in C++
(LFE-Garin-Merino-Pérez EJOR’14 1st revision)

@ CPLEX v12.5 as an auxiliary LP/MIP solver

@ SW/HW: WS Dell Precision T7600, LINUX (v.
Debian2.6.32-48), 64 bits, Intel(R) Xeon(R) CPU E5-2630
@ 2.3 GHz, 12 Gb of RAM and 8 cores.

@ Case study: Instance P7
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Table 1: Risk Neutral model (2). Dimensions. Instance P7

m né nx nel dens | |G| T
14400 3456 10368 1206875 0.60 182 288 5
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Table 2: Risk Neutral (2). Instance P7

T C  zgre  25pw(0G%) GG% tore topy
5 7 269441 269441(*) 0.0 63 345
(*): Optimality gap achieved (< 0,01 %)

@ Solution value of RN model (2):
Expected profit zry=269441.
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Table 2: Risk Neutral (2). Instance P7

T C  zgre  25pw(0G%) GG% tore topy
5 7 269441 269441(*) 0.0 63 345
(*): Optimality gap achieved (< 0,01 %)

@ Solution value of RN model (2):
Expected profit zry=269441.

@ Modeler-driven thresholds: ¢P = 6P x zgry and, so, ¢*=255969,
$?=242497, $3=229025 and ¢*=215553.
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Table 2: Risk Neutral (2). Instance P7

T C  zgre  25pw(0G%) GG% tore topy
5 7 269441 269441(*) 0.0 63 345
(*): Optimality gap achieved (< 0,01 %)

@ Solution value of RN model (2):
Expected profit zry=269441.

@ Modeler-driven thresholds: ¢P = 6P x zgry and, so, ¢*=255969,
$2=242497, $3=229025 and $*=215553.

@ Computed number of scenarios with shortfall on reaching ¢P out
of4182 scenarios in RN sol. [QL, [=50, [Q3,|=22, |23,|=6 and
|2z 0.

@ Computed average shortfall: Sk, =3498.9, 54,,=886.9, S5\,=56.6,
=4
Sgn=0.0.

Laureano F. Escudero Universidad Rey| soL-vai-tsp



Looking for acceptable risk reduction on the RN results

Assuming that the RN picture is carrying out an excessive profit
risk, let us consider that it has been decided that:

@ Upper bound on number of scenarios with shortfall should
be reduced from 50 to |Q*|=45, from 22 to |Q?|=17, from 6
to |2%|=3 and the zero scenario policy is kept for profile 4
(i.e., |Q4=0).

@ Upper bound on related expected shortfall should be
reduced from 3498.9 to §1=3240.0, from 886.9 to
$°=650.0, from 56.6 to 5°=35.0 and the zero shortfall
policy is obviously kept for profile 4 (i.e., $*=0.0).
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Table 3: TSD model (3). Dimensions for 4 profiles, 7 = {T}

Strategy m né nx N Neg ns ne | dens 9] gl T
FSD 15132 | 3456 10368 728 4 0 0 0.628 | 182 288 5
SSD 15132 | 3456 10368 0 0 728 4 0.628 | 182 288 5
TSD1 15864 | 3456 10368 728 4 728 4 | 0571 | 182 288 5

Universidad Rey



Table 4: TSD risk averse strategy (3). 7 = {T }. Instance P7

PEP = (1234} peP  1-(12] % ZN(06%) G6% S0 U
B(RP) s B  5/gP

0.248(45) 3240 0.495(90) 5839 269247 269273 (*) * 77 3135
0.094(17) 650 0.181(33) 1063

0.017(3) 35 ¢! = 67360.2

0(0) 0 ¢? =53888.2

(*): Optimality gap achieved (< 0,01 %)
*: Goodness gap achieved (< 0,01 %)

@ Solution value of TDD1 model (3): Let us consider the expected
profit zI321=269273 obtained by plain use of CPLEX

@ (Notice that the BFC-TSD algorithm gives a close value,
z3221=269247 whose goodness gap is < 0,01 %).

@ Observe that the expected profit of the risk neutral model (2),
Zrn=269441 has only been slightly reduced by the risk averse
model TSD (3) and, on the other hand, the profit risk of
non-wanted scenarios has been reduced to the modeler-driven
bounds.
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Rationale behind Table 4

Risk averse TSD model (3) for 7 = {T}.

@ It only considers last stage, T (i.e., TSD1 policy is used).

@ However, as an example, a modeler-driven non-wanted
profit threshold ¢P at stage T — 1 is shown in the table for
p = 1,2 in case that the TSD1 solution is accepted. It is
also shown (in color blue);

@ (P(|QP|): Computed fraction of scenarios (number of
scenarios) in set 2 with shortfall on reaching profit
threshold ¢P vp € PT-1 = {1,2}

@ sP: Computed average shortfall.

Those values have been computed from the TSD1 solution for
the profit obtained up to stage T — 1, say

zr_p= Y w9 ) (a%% +bx).

gegt-t  gedv
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Looking for acceptable risk reduction on TSD1 results

Assuming that the TSD1 picture is carrying out an excessive
profit risk up to stage T — 1, let us consider that it has been
decided that:

@ Keep the P- and SP-bounds on risk reduction for last stage
T as they are for TSD1 strategy, forp € PT.

@ Upper bound on number of scenarios with shortfall up to
stage T — 1 should be reduced from 90 to |Q*|=80 and
from 33 to |?|=26.

@ Upper bound on related expected shortfall should be
reduced from 5839.0 to e1=5400.0 and from 1063.0 to
€2=800.0.

) RationaNIe behind Tables 5 and 6: Risk averse TSD model
(3)for T ={T —1,T}, where |PT|=4and |[PT-1 =2
(so-named TSD?2).
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Table 5: TSD model (3). Dimensions for 4 profiles, T={T}
and 6 profiles, T ={T —1,T}

Strategy m né nx Ny Neg ns ne | dens Q] <
FSD 15132 | 3456 10368 728 4 0 0 0.628 | 182 288 5
SSD 15132 | 3456 10368 0 0 728 4 | 0628 | 182 288 5
TSD1 15864 | 3456 10368 728 4 728 4 0.571 | 182 288 5
TSD2 16164 | 3456 10368 876 6 876 6 | 0561 | 182 288 5

Universidad Rey



Table 6: TSD risk averse strategy (3). 7 = {T — 1, T}. Instance P7

peP’={1,234 peP't={1,2} z22*° zI5D?(0G %) GG% t10%  t[5D?

BP(I92P]) sP BP(92°]) s

0.248(45) 3240  0.440(80) 5400 269204 269222 (0.01 %) * 225 -
0.094(17) 650  0.143(26) 800

0.017(3) 35

0(0) 0

(*): Optimality gap achieved (< 0,01 %)
*: Goodness gap achieved (< 0,01 %)
—: Out of memory (12Gb) or time limit (6h) exceeded

@ Solution value of TDD2 model (3): Let us consider the expected
profit z[522=269222 obtained by plain use of CPLEX

@ (Notice that the BFC-TSD algorithm gives a close value,
z3222=269204 whose goodness gap is < 0,01 %).

@ Observe that the expected profit of the TSD1 risk averse model
(3), z1sp1=269273 has only been slightly reduced by the risk
averse model TSD2 (3) and, on the other hand, the profit risk of
non-wanted scenarios has been reduced to the modeler-driven

bounds.
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Successful results: Production planning

Computational Characteristics:
@ Parallel Compting: MPI, Message Passing Interface.
@ CPLEXv12.5

@ Experimental Parallel-SDP code in C
(Aldasoro-LFE-Merino-Perez COR’13).

@ ARINA computational cluster, SGI/1IZO-SGlker at
UPV/EHU,

We have used 8 xeon nodes, where each has 12
processors and 48Gb of RAM, 2.4GHz (96 total
processors).

@ Realistic instances from Cristobal-LFE-Monge COR’09.
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Summary. Instance c64

@ 7=16 periods, £=3 stages, Randomly generated (2=7766
scenarios

@ m=4.25 Million cons, n01=1.16 Million 0-1 varis, nc=2.7
Million continuous vars

@ S-SDP: 22167 secs, number of nprob=3249 MILP
subproblems

@ P-SDP: GG = 0,16 % optimality gap versus plain use
CPLEX v.12.5, elapsed time=3442 secs,
Effciency=53.67 %

@ CPLEX: running out of memory (35Gb) after 5926 secs,
solution value with OG=1.80 % quasi-optimality gap at
stopping time instant.
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Summary. Instance ¢85

@ 7=16 periods, £=4 stages, Randomly generated 2=15435
scenarios
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Summary. Instance ¢85

@ 7=16 periods, £=4 stages, Randomly generated 2=15435
scenarios

@ CPLEX: Stop due to out of memory (35Gb), no LP feasible
solution at 3003 secs.
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Summary. Instance ¢85

@ 7=16 periods, £=4 stages, Randomly generated 2=15435
scenarios

@ CPLEX: Stop due to out of memory (35Gb), no LP feasible
solution at 3003 secs.

® m=57.8 million cons, n01=15.4 million 0-1 vars,
nc=38.5 million continuous vars

@ S-SDP: 26180 secs, number of nprob=517 MILP
subproblems.
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Summary. Instance ¢85

@ 7=16 periods, £=4 stages, Randomly generated 2=15435
scenarios

@ CPLEX: Stop due to out of memory (35Gb), no LP feasible
solution at 3003 secs.

@ m=57.8 million cons, n01=15.4 million 0-1 vars,
nc=38.5 million continuous vars

@ S-SDP: 26180 secs, number of nprob=517 MILP
subproblems.

@ P-SDP: 2446 secs, Effciency=89.19.
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